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1. Introduction 
 
This paper analyzes operational risk loss data for 18 Japanese banks and proposes a 

simple benchmark formula for operational risk capital (ORC hereafter). 
Under Basel II,1 a bank that opts for the “Advanced Measurement Approach” (AMA) 

should develop its own ORC model and use this for regulatory purposes. This has led to 
the wider use of ORC models among banks worldwide, including Japanese banks. As a 
result, practices in operational risk measurement have made great strides. 

However, there has been no approach for measuring ORC that deserves the name of 
an established standard; banks have a great deal of leeway when it comes to how they 
design and implement their models. In addition, improving measurement approaches 
through back testing is much more difficult than in other risk areas, all the more because 
Basel II requires “a soundness standard comparable to a one-year holding period and a 
99.9th percentile confidence interval.”2 

Hence, the old problem of “the possibility that banks with similar risk profiles could 
hold different levels of capital under the AMA if they rely on substantially different 
modeling approaches and assumptions.” 3  Furthermore, since the Basic Indicator 
Approach (BIA) of Basel II is already functioning as a de facto benchmark, it is possible 
that the AMA capitals for many banks have been greatly underestimated.4 

Given this situation, operational risk measurement lacks the level of credibility of 
other risk areas, such as credit or market risk. This situation also makes it difficult to 
compare ORCs between banks. 

While the standardization of modeling approaches seems premature,5 it may be 
nevertheless highly desirable both for banks and regulators to have a benchmark that can 
be used to assess the reasonableness of any bank’s ORC in order to reduce the disparities 
in ORC and prevent possible underestimation. Hence, what we are proposing is a 
benchmark for ORC, in the form of a simple formula that is much more effective at 
reflecting underlying risk than the BIA, which simply multiplies the gross income of a 
bank by 15% to obtain its ORC.  

                                                  
1 The Basel Committee on Banking Supervision (2004) 
2 Paragraph 657, The Basel Committee on Banking Supervision (2004) 
3 The Basel Committee on Banking Supervision (2009a) 
4 The Basel Committee on Banking Supervision (2009b) indicates that banks’ AMA capitals vary to a 
much smaller extent than their loss frequency or severity figures; the AMA capital figures concentrate 
around a level, which is a little below the BIA capital (15% of the gross income). 
5 “The flexibility provided in the AMA reflects the comparative stage of development of operational 
risk modeling, relative to the modeling of other risk types, and hence the need to allow banks to 
explore how best to obtain risk-sensitive estimates of operational risk exposure.” (The Basel 
Committee on Banking Supervision (2009a)) 
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We derive the formula by using a common severity distribution that we assume to be 
approximately applicable to every bank. The only parameter the formula uses to calculate 
ORC is frequency of losses greater than or equal to a given severity. It does not resort to 
Monte Carlo simulation.  

It works well as a benchmark. By assuming a common severity distribution, the 
formula ignores the differences in the loss severity distributions between banks, but it 
simplifies the ORC calculation so as to be implementable by a wider range of banks. By 
using the annual frequency, it is still risk sensitive. It gives reasonably realistic ORC. 

A Generalized Pareto Distribution (GPD) is fitted to a dataset of losses that are 
lumped together from a sample group of 18 Japanese banks to estimate the common 
severity distribution. It is difficult to determine whether or to what extent it is reasonable 
to apply this distribution to all these banks without a sufficient amount of data, but 
tentatively we consider it appropriate to use this particular distribution for benchmark 
purposes. 

 
Although we have derived our results from 18 Japanese banks’ data, our findings and 

the formula we have obtained are likely to be valid for other Japanese banks as well and 
even for banks around the world, without major changes. We will be referring to some 
studies and loss data collection exercises that support similar observations that we have 
tested and used in developing our formula. 

Of course, further analysis and accumulation of operational loss data are needed to 
determine the range of the applicability of our formula. We hope that this paper 
encourages those engaged in the field of operational risk management to continue their 
efforts to accumulate and analyze data, which will lead to even better benchmarks than 
our proposal. 

 
The idea of the formula is straightforward and is not unique to this paper. As far as the 

authors know, Dutta and Perry (2006), and De Koker (2006) indicate a similar formula. 
Dutta and Perry (2006) used a similar formula to estimate the ORC of seven sample banks 
based on the assumption that large operational losses follow a power law. De Koker 
(2006) derived an ORC formula similar to ours based on his observation of the power-law 
behavior of operational losses. He likened his formula to an IRB for operational risk. His 
fundamental observation and formula are similar to ours.  

The greatest difference between their studies and ours is that we derive a simple 
formula by assuming that a common loss severity distribution fits reasonably well for 
many banks. This simplification enables banks with fewer losses to obtain some idea of 
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their ORC without having to estimate their own loss severity distributions themselves. 
We make the assumption of a common loss severity distribution based on our 

observation that different banks have a similar pattern of loss severity distribution. This 
observation is shared by some literature, including De Koker (2006) (“severity estimates 
… appear to be fairly constant from firm to firm and across the business cycle”) and de 
Fontnouvelle et al (2005) (“we cannot reject the hypothesis that the distribution of losses 
is the same across large firms”). This paper examines this observation of similarity in loss 
severity distributions on the loss data from 18 Japanese banks. 

There are many empirical studies on banks’ operational losses that estimate the shape 
of the loss severity distribution and calculate their ORCs. Many of them provide more or 
less similar results to this paper. The studies are listed in Table 11 in Section 5. 

 
The outline of the paper is as follows. We begin with a description of the data by 

observing that the loss severity distributions of operational losses of the 18 banks 
resemble each other and that they appear to be well approximated by a common loss 
severity distribution (Section 2). In Section 3, we estimate the common loss severity 
distribution that can be applied as an approximation for the 18 individual Japanese banks. 
We do this by fitting a GPD to a consolidated dataset of all the losses from the 18 sample 
banks. We then conduct goodness-of-fit tests of this common loss severity distribution to 
each individual bank’s loss dataset. In Section 4, we introduce a simple formula for ORC, 
using the common loss severity distribution. We also evaluate how well the formula 
performs. Section 5 looks at other studies that indicate the applicability of the common 
loss severity distribution to other banks in Japan and abroad. Finally in Section 6 we 
conclude by discussing challenges in implementing the formula. 

 
 

2. Data (loss data of 18 Japanese banks) 
 

2.1 Outline of the data 
We analyze a dataset reported by 18 Japanese banks as a part of the loss data 

collection exercise conducted by the Basel Committee on Banking Supervision in 2008 
(LDCE2008 hereafter).6 The main features of the dataset relevant to our analysis (most of 
them are common to the description in the LDCE2008 report) are: 
• The analyzed dataset was submitted by 18 Japanese banks (including consolidated 

                                                  
6 The report for the exercise is entitled, “Results from the 2008 Loss Data Collection Exercise for 
Operational Risk” (The Basel Committee on Banking Supervision (2009b)). 
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subsidiaries, such as securities companies), of which seven banks were targeting or 
had already implemented the AMA. All the other 11 banks had implemented the 
Standardized Approach (TSA). 

• Data on 324,623 losses were submitted by the 18 banks. Of these, 2,502 losses were 
greater than or equal to 20K Euros, and the total amount of the losses was about 
150 billion Yen (about 950 million Euros).7 

• Institutions that participated in the LDCE2008 were asked to submit a minimum of 
three years of loss data. The period for submitted data varied from bank to bank, but 
on average, the 18 banks submitted a little over four years of loss data. 

• Most of the 18 Japanese banks submitted data up to December 31, 2007, or March 
31, 2008. 

• Information requested for each loss event included: 
 Three dates related to the loss (date of occurrence, date of impact, and date of 

discovery); 
 The Basel business line and event type; 
 Gross loss amount, recoveries, and the amount of any insurance recoveries. 

• The loss severity used in this paper is the gross loss amount after all recoveries 
(except insurance), i.e., gross loss amount − (all recoveries − insurance recoveries). 

• “The aggregated dataset” for the Japanese banks is used in the analysis.8 
• No data are excluded because of their age. As a result, five years of losses are used 

for a bank that submitted losses for five years and three years of losses for a bank 
that submitted losses for three years. 

• The threshold of data varies depending on the analysis. When the threshold is set at 
a high level (e.g., 100K Yen, about 634 Euros), less than 18 banks are analyzed, as 
some banks do not incur losses greater than that higher threshold. 

 

2.2 Graphical presentation of the losses 
Losses of individual banks (or groups of banks) are presented graphically in a manner 

that respects their anonymity. In this paper we call these graphs double-log plots since 
both the x and y axes are in log terms. They are plotted as follows: 
• All the losses greater than or equal to 10K Yen (about 63 Euros) are depicted; 
                                                  
7 The exchange rate applied throughout this paper is for March 31, 2008 (1 Yen = 0.006336486 Euros). 
It is the same as the one used in LDCE2008. Please refer to The Basel Committee on Banking 
Supervision (2009b) for the details. 
8  The aggregate dataset was constructed by converting loss amounts into euro amounts and 
aggregating transactions with the same reference number into one event. The euro amounts were 
converted back to yen in our analysis. Note that the dataset mainly analyzed in the LDCE2008 was 
the stable dataset, a subset of the aggregate dataset containing data from a stable time period for each 
bank. Please refer to The Basel Committee on Banking Supervision (2009b) for details. 
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• The x-axis stands for the severity (Yen amount) of losses; 
• The y-axis stands for: (the number of losses ≥ severity on the x-axis) / (total number 

of losses ≥ 10K Yen);* 
* 1–F(x); F(x) being the cumulative distribution of the loss severity. 

• Both axes are in log terms; 
• For the purpose of anonymity, the scales of the x-axis and y-axis are changed from 

bank to bank, so that the maximum severity for each bank is located at roughly the 
same position; 

• Losses from single banks (Figure 1) and losses from groups of different banks 
lumped together (Figures 2, 3) are depicted; 

• No adjustments, such as weighting or scaling, to the frequency or severity of the 
losses are made when losses from different banks are graphed in one plot. In other 
words, losses from different banks are plotted without any adjustments, as if they 
occurred in different divisions or subsidiaries of a single bank; 

• All the losses from any single bank or group of banks are depicted in one graph; i.e., 
graphs are drawn at an enterprise level, not at a more granular level, such as a 
business-line or event-type level; 

• A continuous straight line with a slope of −1 is added for the purpose of comparing 
the graphs. 

 

Figure 1 shows the loss severity distributions of the individual 18 banks.9 To a certain 
extent, the curves of different banks resemble each other, with considerable variation in 
the tail region. 

However, when losses from a set of banks are lumped together and plotted as if they 
were from one bigger bank, they exhibit a tendency to form an almost straight line with a 
slope of about −1.10  

Figure 2 is an example. Losses from nine medium-sized Japanese banks (known as 
regional banks) are lumped together and plotted as if they were from one bigger bank. 
While the distributions of individual banks’ losses look different (left), the consolidated 
data from the same nine banks form a nearly straight line with a slope of about −1 (right). 

Figure 3 shows the same graph for a larger consolidated dataset that is taken from all 
the 18 sample banks. The curve forms a nearly straight line with a slope of about −1, 
                                                  
9 More losses in the graph do not necessarily mean more annual losses, because the period of reported 
losses varies from bank to bank. 
10 The straight line with a negative slope means that the losses follow a power law and that a 
Pareto-type distribution can be fitted to them. The fact that the slope of the line is about −1 indicates 
the relationship in which, when a loss becomes 10-times as severe, the probability of such a loss 
occurring becomes 10 times less. This relationship is well in line with practical experience. 
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similar to the curve in Figure 2. 
There are two ways a loss severity distribution based on the consolidated data can be 

interpreted. First, it can be thought of as a distribution for a hypothetical big bank that 
merges several banks together. That is, all the 18 banks are thought of as if they were 
subsidiaries that make up a single big bank, and it is the loss severity distribution of that 
bank which is examined.11  

The other interpretation is to consider the dataset as if it had been obtained from many 
years of operation by a single bank. Since the 18 banks submitted an average of a little 
more than four years of losses, this distribution can be interpreted as the result of 70 to 80 
repetitions of one year’s operation of an average bank (18 × 4 = 72). 

If we adopt this latter interpretation, we might be justified in assuming that an 
individual bank’s losses follow the loss severity distribution of Figure 3 and that they 
approach it when more loss data are accumulated over time. 

                                                  
11 All the losses from all the 18 banks need to be independent for this interpretation. Because of this, 
several losses in several banks that have the same root cause (e.g., an earthquake or disruption of a 
computer system shared by banks) need to be treated as a single loss. 
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Both severity (x-axis) and frequency (y-axis) are in log terms. 

 

 
Figure 1 (continued below): Loss severity distributions for individual banks 
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Both severity (x-axis) and frequency (y-axis) are in log terms. 

 
 

Figure 1 (continued): Loss severity distributions for individual banks
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Figure 2: Losses of nine medium-sized banks lumped together:  
individual datasets (left), consolidated dataset (right) 
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Figure 3: Losses of all the 18 Japanese banks lumped together 
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3. Estimation of the common loss severity distribution 
 

In the previous section we showed that by consolidating data, the loss severity 
distributions of separate banks appear to converge toward a Pareto-type distribution. In 
other words, we may be justified in assuming that individual banks’ losses come from a 
Pareto-type common distribution (“common loss severity distribution” hereafter). 

In this section, we first fit the Generalized Pareto distribution to the dataset of the 18 
banks’ losses lumped together to determine the common loss severity distribution.12  

Then we examine the appropriateness of the assumption that individual banks’ losses 
follow this common loss severity distribution. We do this because the fact that the 
consolidated dataset appears to follow the common loss severity distribution, e.g., the 
consolidated losses take a shape like that in Figure 3, does not necessarily mean that the 
individual banks’ losses follow this distribution.13  

We examine the appropriateness of the common loss severity distribution 
assumption through two kinds of statistical tests. First, we confirm in Appendix 1 that 
the null-hypothesis that the loss severity distribution is identical across 18 sample banks 
(the alternative: losses in at least one bank do not follow the same loss severity 
distribution) is not rejected. Second, we confirm in this section that the common loss 
severity distribution for the consolidated data fits reasonably well to the individual 
banks’ data sets. 

 
3.1 The i.i.d. assumption 

We assume that the observations to which the distribution is fitted are the 
realizations of independent, identically distributed (i.i.d.) random variables.14  

                                                  
12 Nešlehová et al. (2006) points out the danger of data contamination, i.e., “there are observations 
within the sample which do not follow the same distribution as the rest of the data” and calls for 
special attention when contamination is suspected. The determination of the common loss severity 
distribution by fitting a GPD to the consolidated dataset of 18 sample banks as we did runs this same 
risk. However, we think our method is justified for the following reasons: (i) The individual banks’ 
dataset can be assumed to follow the same distribution (see Footnote 14), (ii) The predictions of the 
maximum loss by the common loss severity distribution are conservative in half of the cases and less 
conservative in the other half the cases when compared with the actual losses for individual banks (see 
Table 2). 
13 For example, when the individual banks’ loss datasets follow different log-normal distributions with 
different variance, the consolidated dataset from these banks can take a very similar shape to that in 
Figure 3. This also happens when some banks’ losses follow power distributions and other banks’ losses 
follow log-normal distributions. On the other hand, when several banks’ losses individually follow the 
common loss severity distribution, then the consolidated dataset from these banks also follows that 
distribution. 
14 The i.i.d. assumption is justified by the same reasons provided in Moscadelli (2004), which analyzed 
a loss dataset collected by the Basel Committee on Banking Supervision. The study based the 
assumption of independence on the idea that any pooling exercise of banks’ operational risk losses 
collected in a reasonably short time can mitigate the threat of dependence of the data. To a lesser 
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3.2 Units of measure 
The unit of measure is at the enterprise level, not the business-line or event-type level. 

This is consistent with our purpose of deriving a simple ORC formula. It also allows a 
larger sample size. See Appendix 2 for estimations for individual business lines or event 
types.  
 

3.3 Distributional assumptions 
We fit the Generalized Pareto Distribution (GPD) to the excess value over a given 

threshold (see Section 3.4 below for the threshold) of losses greater than that threshold. In 
other words, we use the “Peaks over threshold” (POT) approach on the assumption that 
the threshold is sufficiently high.15 

 
The GPD is expressed as follows (the case when ξ = 0 is omitted): 

 

     where 0>β , and 0≥x  when 0>ξ  

 
The parameters ξ and β are referred to as the shape and scale parameters, respectively. 

 

3.4 Threshold for the GPD 
GPD parameter estimates (Figure 4, Table 1) are highly sensitive to the thresholds 

above which the distribution is fitted to. Therefore choosing the threshold is crucial in 
fitting the GPD. However, there is no unique, established way to determine this value and 
it is usually the case in practical application that various qualitative and quantitative 
factors are taken into consideration. 

In this paper, we are using mainly the set of parameters estimated with the threshold 
of 10 million Yen (about 63K Euros). This choice of the threshold is based on the 
following considerations. 
• A higher threshold provides a better approximation of the data by the GPD, but a 

smaller number of samples. On the other hand, a lower threshold provides more 
observations and a smaller estimation variance but a bigger bias. 

• We experimented with thresholds ranging from 1 million Yen (about 6K Euros) to 

                                                                                                                                                  
degree, this situation holds true for our dataset as well, whose data are a little over four years of age on 
average. Moscadelli (2004) based the identically distributed data assumption on the consideration that 
his sample banks have characteristics that are not too dissimilar, because they were the ones that 
participated in the 2002 LDCE. This holds true, possibly to a higher degree, for our dataset, which is 
obtained from 18 middle-sized or large-sized Japanese banks. 
15 The Pickands-Balkema-de Haan Theorem essentially states that the “distribution of the losses in 
excess of a sufficiently high threshold can be approximated by the GPD.” 
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over 1 billion Yen (about 6 million Euros) in 1 million Yen increments. ξ is stable 
for the thresholds between 1 million and about 30 million Yen (about 190K Euros). 
This holds true regardless of whether they are estimated by the maximum 
likelihood (ML) method or the probability weighted moments (PWM) method 
(Figure 4, Table 1). 

• The mean excess plot is approximately linear for the whole area over 1 million Yen 
(6K Euros),16 except for tail parts above 100 million Yen (about 634K Euros), 
where only a small number of large excesses are averaged (Figure 5). This suggests 
that the GPD threshold could be as small as 1 million Yen (about 6K Euros).  

• A lower threshold used in the estimation of the GPD enlarges the applicability of 
the simple ORC formula we propose.17 

                                                  
16 The graph plots the following points of (x, y): 
x-axis: various threshold levels u (≥1 million Yen), y-axis: mean of the excess values (loss severity − 
threshold u) of all the exceedances (the losses greater than u). The biggest three losses are excluded 
from the graph. 
17 The ORC formula uses as input the annual frequency of losses that are greater than or equal to a 
given severity, which needs to be higher than or equal to the GPD estimation threshold. Therefore, a 
lower threshold for the GPD estimation allows us to use the frequency of smaller losses in the formula, 
thus widening the formula’s applicability to banks with zero or few bigger losses. 
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Figure 4: GPD Estimates of ξ for different numbers of exceedances and thresholds: 
estimates using ML method (top), estimates using PWM method (bottom) 
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Figure 5: Mean-excess plot 
 

 

3.5 Parameter estimation technique 
We estimate the parameters of the distribution using both the maximum likelihood 

(ML) method and the probability weighted moments (PWM) method.18 We have shown 
the results from both estimation methods, because estimated parameters differ 
considerably depending on the methods. At the same time, the parameters we use are 
mainly those obtained from the ML method,19 considering that the number of data points 
is adequate when the threshold is set to 10 million Yen.20 
 

3.6 Estimation results 
Table 1 provides the estimation results. The results of two different estimation 

methods (ML, PWM) for four different thresholds (1 million, 10 million, 100 million, 1 

                                                  
18 The PWM method used in this paper employs the following procedure. 
(i) Define the probability weighted moments of the GPD as: 

 ( ) ( ){ } ( ){ } ⎥⎦
⎤

⎢⎣
⎡ −= sGrGpxp,r,sM xx 1E , G(x): distribution function of the GPD 

(ii) Using the known relation of M(1,0,s)=β/{(s+1)(s+1-ξ)} in (i) and inputting s=0 and s=1, a system of 
two equations is obtained. Estimates for β, ξ are solutions of the system. This assumes that ξ<1 
(existence of average) and the estimation never exceeds 1. 
19 ML estimation is less robust when the sample size is small. It is often optimal when the sample size 
is deemed large, because of its good asymptotic properties — consistency, asymptotic normality and 
asymptotic efficiency — provided that the distribution assumption is correct. No ML method 
estimators for GPD parameters exist in a closed form, and numerical optimization is required. 
20 Hosking and Wallis (1987) states “unless the sample size is 500 or more, estimators derived by the 
method of moments or the method of probability-weighted moments are more reliable (than maximum 
likelihood estimation of the generalized Pareto distribution.)” 
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billion Yen) are shown. (Also see Figure 4 for ξ estimates for different thresholds.) 
The ξ estimates using the ML method are very high, close to 1 or greater than 1 for all 

the thresholds, indicating a very heavy tail. Note that the GPD does not have a mean 
value (it is infinite) when ξ is greater than or equal to 1, and the ORC based on this 
estimate is expected to be very large. In particular, when the threshold is 100 million Yen 
(≈ € 633K) the ξ is especially high (1.543). The ORC calculated using this parameter 
estimation is so large that it may be considered to be what Nešlehová et al. (2006) calls a 
“ridiculously high capital charge.” 21  However, this ξ (1.543) estimated with the 
threshold of 100 million Yen needs to be interpreted with caveats and its appropriateness 
should be tested against larger datasets given the small number of data points (88 data 
points) on which it is estimated, the large confidence interval (see Figure 4, top), and the 
fact that its estimation using the PWM method is 0.877. 

On the other hand, ξ estimated with the threshold of 10 million Yen (0.973) appears 
to be within the reasonable range, considering that the ORC calculated using this ξ stays 
within the reasonable range. (See Section 4.3.2 “Reality of the capital estimates”.) 

 
 

Table 1: GPD parameter estimates 
 

Threshold (Yen) 1 million 
(≈ € 6K) 

10 million 
(≈ € 63K) 

100 million 
(≈ € 634K) 

1 billion 
(≈ € 6 million)

Number of losses ≥ threshold 7,151 883 88 13
ML method  
 β 1.315 11.450 64.772 1,195.38 
 ξ 0.994 0.973 1.543 1.006
PWM method  
 β 1.405 12.142 123.135 1,195.38
 ξ 0.924 0.903 0.877 0.781

 β: scale parameter, unit = 1 million Yen 
 ξ: shape parameter 
 
 

                                                  
21 A GPD with a ξ greater than or equal to 1 does not have a mean (it becomes infinite) and the ORC 
based on that distribution is extremely large. Nešlehová et al. (2006) states that, “The transition from 
infinite second and finite first moment, say, to infinite first moment (the mean) is however a serious 
one and should be handled very carefully,” and calls for consideration of possible reasons for such 
results, i.e., incorrect statistical inference or EVT assumptions, are not satisfied. Dutta and Perry 
(2006) have a negative view of applying GPD or extreme value theory to ORC calculations, partly 
based on the fact that GPD leads to unrealistically large amounts of ORC in many banks. 
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3.7 Goodness-of-fit of the common loss severity distribution 
In this section, we examine the goodness-of-fit of the common loss severity 

distribution22 estimated in Section 3.6 with the threshold of 10 million Yen using the 
ML method. 

Table 2 shows the results of the goodness-of-fit tests of the common loss severity 
distribution to each of the individual banks.  
• The null hypothesis is that the observed losses (the excesses over the 10 million 

Yen threshold) from each of the 18 banks originate from the common loss severity 
distribution. The alternative is that the observed losses (the excesses over the 10 
million Yen threshold) from each of the 18 banks do not originate from the common 
loss severity distribution. 

• Only 12 banks are tested, because six banks have fewer than five losses that are 
higher than the threshold (10 million Yen). 

• Table 2 (top) reports the number of banks for which the null-hypothesis is rejected 
and the number of those for which it is not rejected. Table 2 (bottom) reports the 
P-values generated by the different tests for each bank. 

• The rightmost column of Table 2 (bottom) shows how the common severity 
distribution predicts the empirically largest loss for each bank. A figure that is 
greater than 100% means that the common severity distribution underestimates the 
empirically largest loss, whereas a figure that is smaller than 100% means that the 
common severity distribution overestimates that loss.23 

 
The tests that put more weight on the fit to the body — the Kolmogorov-Smirnov 

(KS) test and the Cramér-von Mises (CvM) test — do not reject the null hypothesis for 
any of the 12 banks tested. On the other hand, upper-tail Anderson-Darling tests (ADup 
and AD2

up),24 which put more weight on the tail, give a lower P-value and reject the null 
hypothesis for nearly half of the banks tested.  

The common severity distribution overestimates the empirically largest loss for each 
                                                  
22 GPD with ξ= 0.973, β= 11.45 million Yen 
23 This calculation is to show the performance of the common loss severity distribution by showing the 
difference between the prediction and the observed value for the largest figure that is available. Note 
that the percentile examined is much lower than the ORC (about 90% at the greatest), as the data 
collection period for each bank is between 3 and about 10 years. 
The figure stands for the percentage of the following (a)/(b).  
(a) The severity of the largest loss for each bank 
(b) The prediction, which is provided by applying the percentile of (a) in empirical loss severity 
distribution for the bank* to the common loss severity distribution. 
* The percentile of (a): (100 − 100/2n), where n is the number of losses greater or equal to 10 million Yen, 
e.g., the percentile of the greatest loss is 90% when n is 5. The prediction is made based on the 90 
percentile loss of the common loss severity distribution. 
24 Please refer to Chernobai et al. (2005) for the details of the upper-tail Anderson-Darling tests. 
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of six of the banks and underestimates it for each of the other six, with a very large error 
in the case of underestimation. 

 
Despite these observations, we have decided to use the estimates in Section 3.6 and 

assume that they are applicable to the individual banks’ loss severity distributions in 
deriving the ORC formula in Section 4. This is based on the following considerations. 
• The distribution estimate is the best one based on the available data and we expect 

that the parameters will not change much even when more data are accumulated. 
(Of course, the estimates need to be improved as more data are accumulated in the 
future.) 

• The common severity distribution can be taken as the “median” of distributions for 
the 18 sample banks. 

 The common severity distribution overestimates the largest loss for each of six 
of the 12 tested banks and underestimates the largest loss for each of the other 
six. In other words, as far as it is judged from the empirically largest losses, the 
common loss severity distribution is located at the midway point among the 12 
distributions of the individual banks. 

• A definitive judgment is difficult to make about the tail part, because the available 
data is so limited. 

 The great difference between the predictions and the actual figures in the case 
of underestimation in Table 2 is largely attributable to the small number of data 
points. Therefore, it is expected that a longer observation period would reduce 
this difference. The fact that the margin of error shrinks significantly when a 
similar prediction is made on the consolidated data of all the 18 banks (the ratio 
shrinks to about 300% in this case) supports this expectation. 
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Table 2: Goodness-of-fit of the common loss severity distribution* 
to the datasets for individual banks** 

 
Significance level  KS CvM ADup AD2

up 
5% Level Not rejected 12 12 9 6 
 Rejected 0 0 3 6 
10% Level Not rejected 12 12 8 5 
 Rejected 0 0 4 7 

 
 KS CvM ADup AD2up Prediction error for 

the largest loss*** 
Bank 1 0.51 0.50 0.45 0.40 60% 
Bank 2 0.89 0.84 0.52 0.37 45% 
Bank 3 0.66 0.64 0.23 0.24 109% 
Bank 4 0.68 0.58 0.38 0.22 32% 
Bank 5 0.45 0.48 0.57 0.18 36% 
Bank 6 0.32 0.35 0.41 0.08 70% 
Bank 7 0.68 0.68 0.09 0.03 135% 
Bank 8 0.29 0.29 0.67 0.02 24% 
Bank 9 0.55 0.55 0.02 0.01 1,435% 

Bank 10 0.30 0.31 0.00 0.00 1,283% 
Bank 11 0.47 0.48 0.00 0.00 334% 
Bank 12 0.44 0.44 0.23 0.00 109% 

 
 * GPD estimated in Section 3 (threshold: 10 million Yen, ML method) 
** Losses greater than or equal to 10 million Yen (about 63K Euros) 

*** (Severity of the largest loss predicted by the common severity distribution) / (severity of the 
largest loss that is observed) 

 

 

Table 3 shows the results of the goodness-of-fit tests of the common loss severity 
distribution to the whole dataset of all the 18 sample banks lumped together. This test is 
effective in examining the appropriateness of choosing the GPD as the common loss 
severity distribution. 

The null hypothesis is that the excesses over the 10 million Yen threshold follow the 
common loss severity distribution. The alternative is that the excesses over the 10 million 
Yen threshold do not follow the common loss severity distribution. 

The KS test and the CvM test do not reject the null hypothesis. On the other hand, 
the ADup and AD2

up tests indicate lower P-values. Both of them do not reject the null 
hypothesis at a significance level of 5%, but both of them reject it at a significance level 
of 10%. 
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Table 3: Goodness-of-fit of the common loss severity distribution*  
to the dataset of all the banks** 

 
Significance level  

P-value 
5% 10% 

KS 0.82 Not-Rejected Not-Rejected 
CvM 0.75 Not-Rejected Not-Rejected 
ADup 0.07 Not-Rejected Rejected 
AD2

up 0.08 Not-Rejected Rejected 
 

 * GPD estimated in Section 3 (threshold: 10 million Yen, ML method) 
** Losses greater than or equal to 10 million Yen (about 63K Euros) 

 
 
The Quantile-quantile (QQ) plots in Figure 6 indicate similar results. The QQ-plot for 

the common loss severity distribution (left) shows a good fit for the body, but a poorer fit 
in the tail part. For comparison, a QQ-plot for a log-normal distribution25 is indicated on 
the right. It shows a poorer fit in comparison to the GPD, especially in the tail region. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: QQ-plots: GPD (left), log-normal distribution (right) 

                                                  
25 Normal distribution is fitted to the logarithm of the losses that are greater than 10 million Yen 
(units: 10K Yen). The estimated parameters are: mean = 7.948, variance = 1.072. 
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3.8 Stability of the common loss severity distribution 
3.8.1 Effects of a small number of huge losses 

This paper estimates the shape of the common loss severity distribution based on a 
limited number of losses. This leads to concern that the shape of the loss severity 
distribution may be highly influenced by a small number of tail losses. To examine this, 
we follow the changes of the parameters of the GPD (ξ: shape parameter, β: scale 
parameter) as we discard or add big losses. 

Note that changes of ξ are more important than those of β for us. The same change 
in the dataset results in greater change in ξ. In addition, changes in ξ have greater effects 
on the ORC than changes in β. When ORC is calculated using the formula proposed in 
this paper, ORC changes greatly in response to change in ξ, whereas it does not change 
so much in response to change in β.26 

First, we observe the changes in the estimated ξ and β as we discard progressively 
smaller losses starting from the biggest loss, one by one, from the dataset consisting of the 
18 banks. The results (Figure 7, top) show how the ξ decreases gradually, i.e., becomes 
less conservative, as the 20 biggest losses are discarded. When the biggest 20 losses are 
discarded, the ξ becomes as small as 0.679. On the other hand, the β increases gradually, 
i.e., becomes more conservative, as the 20 biggest losses are discarded, reaching 12.518 
million Yen (about a 9% increase from the start) when the biggest 20 losses are 
discarded. 

Figure 7 (bottom) shows the parameter changes when a single big loss is added. The ξ 
increases as single huge losses are added one at a time in increasing severity, from 10 
billion Yen (about 63 million Euros) to 1 trillion Yen (about 6 billion Euros) in increments 
of 10 billion Yen. (Note that single losses are added to the original dataset, whereas in the 
former experiment up to 20 losses are excluded from the original.) The marginal increase 
in the ξ becomes smaller as the severity of the additional losses increases. For example, 
when a loss of 1 trillion Yen (about 6 billion Euros) is added, the ξ estimate is 1.012, just 
a little over 1. On the other hand, the β decreases gradually but only slightly, reaching 
only 11.274 million Yen when a loss even as large as 1 trillion Yen (about 6 billion 
Euros) is added. 

                                                  
26 Suppose the ORC of a bank that incurred 10 losses greater than or equal to 10 million Yen (63K 
Euros) is calculated using the simple formula proposed in this paper. A 1% change in ξ results in a 
nearly 10% change in the ORC, while a 1% change in β results in only about a 1% change in ORC. 
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Figure 7: Parameter sensitivity to large losses:  
starting from the largest loss, progressively smaller losses are excluded (top);  

one large loss of a progressively larger size is added (bottom) 
 
 

3.8.2 Effects of the dataset of banks with a larger number of losses 
We have fitted a severity distribution to the pooled data from different banks without 

making any adjustments to the raw data. As a result, banks with more data tend to have a 
stronger influence on the shape of the curve. Some banks have more data because of their 
greater size (in general, the number of the losses increases roughly in proportion to the 
size of a bank) or because of their longer data collection period (data collection periods 
are different among banks in the sample dataset). 

ξ 

ξ 

ξ 

β 
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β (10K Yen)



 23

To provide some insight regarding this issue, we estimate the GPD parameters at the 
threshold of 10 million Yen (ML method) for the dataset of the nine medium sized-banks 
lumped together.27 

The estimated parameters are ξ = 0.690 and β = 15.89 million Yen. They suggest a 
considerably safer risk profile than is indicated by the parameters for the whole dataset 
(ξ = 0.973, β = 11.45 million Yen). That is, if the parameters for the whole dataset were 
applied to the nine regional banks, they would lead to an overestimation of the ORC.28 

Nevertheless, we assume that the parameters for the whole dataset are applicable to 
these medium sized banks and use them in deriving the ORC formula. This is because (i) 
the number of losses of 10 million Yen or greater from the nine banks is small and the 
estimates based on them are not considered to be very stable, (ii) the following sensitivity 
analysis shows that the parameters of the whole dataset are not completely unrealistic. 

The outline of this sensitivity analysis is as follows. 
• We have examined how the parameters change when a single big loss is added to 

the dataset of the nine regional banks lumped together; 
• We have also examined how the ORC changes as the above changing parameters 

are used in the simple ORC formula. When the severity of the additional loss 
reaches about 2 billion Yen (≈ 13 million Euros), the parameters become ξ=0.947, 
β=15.10 million Yen. At that point, the ORC calculated using these parameters for 
the nine banks exceeds the ORC calculated using the parameters for the whole 
dataset as it is (ξ=0.973, β=11.45 million Yen); 

• Adding a 2 billon Yen loss to the dataset is equivalent to a hypothetical single bank 
with the nine banks’ average total assets (6.6 trillion Yen, about 41 billion Euros) 
incurring that loss every 36 years, i.e., 4 (average loss collection period) × 9.29 

 

3.8.3 Stability of the distribution over time 
The stability over time of the shape of the common loss severity distribution is 

impossible to assess without a long observation period. However, to provide some insight, 
we have given estimates of ξ and β using yearly datasets between the years 2002 and 

                                                  
27 Those banks are called regional banks, of which none has total assets over 20 trillion Yen (127 
billion Euros). The loss data from these banks account for only a small fraction of all the data. There 
are only 41 losses greater than or equal to 10 million Yen from these banks, which is about 4.6% of all 
the data points used for estimation (883 in number). 
28 The ORC for the following two sets of parameters are calculated using the simple formula proposed 
in this paper. A bank with 10 losses greater than or equal to 10 million Yen (63K Euros) is supposed.  

• ORC using the parameters for the whole dataset: 91.8 billion Yen (582 million Euros). 
• ORC using the parameters for the nine regional banks: 13.2 billion Yen (84 million Euros). 

29 While no public data are available for assessing the reality of the above point, we do not consider it 
excessively conservative, judging from our daily supervisory discussions with banks. 
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given year from 2002 (solid line) are indicated in the two graphs (top for ξ and bottom 
for β). 

The parameters are considerably unstable on a one-year basis, which we think is 
mainly due to the small number of data points, rather than changes in the underlying 
risk profile.30 
 
 
 
 
 
 
 
 
 
 
 
     Year 
 
 
 
 
 
 
 
 
 
 

 
     Year 

 
Figure 8: Parameter estimates by year: ξ (top), β (bottom) 

 

                                                  
30 The parameter estimation for GPD is unstable when the data points are small in number. See 
Figure 4 for the relationship between ξ and the number of data points. In addition, according to our 
experience as regulators, we do not think risk profiles of banks change so much as the yearly changes 
in the GPD parameters indicate. 
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specified year 
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year 
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4. Simple ORC formula based on the common loss severity distribution 
 

4.1 Simple ORC formula 
We derive a simple ORC formula that calculates the individual 18 sample banks’ 

99.9% value-at-risk. We follow the loss distribution approach (LDA),31 assuming that the 
common loss severity distribution estimated in Section 3 is applicable to the individual 18 
banks. 

We calculate the ORC analytically by applying the GPD estimated in Section 3 to the 
approximation that Böcker and Klüppelberg (2005) proposed (known as single loss 
approximation), thus eliminating the Monte Carlo simulation,32 which is often used in 
applying the LDA. 

Our formula is shown in the following box.33 It has only a single variable: annual 
frequency of losses of a given threshold or greater (e.g., 10 million Yen). 34  The 
parameters of the assumed GPD are estimated in Section 3. 

ORC = (R − u + β/ξ)·[1/(1 − c)·NR]ξ − (−u + β/ξ) 
where, 
1. Variables for individual estimation 
 c = confidence level (e.g., 0.999 for a confidence level of 99.9%) 
 R = severity of losses for observation (e.g., 10 million Yen, about 63K Euros). R 

should be greater than or equal to u (the threshold for the GPD estimation, mainly 
10 million Yen in this paper). 

 NR = annual number of losses ≥ R  

2. GPD Parameters of the common loss severity distribution, estimated in Section 3. 
 ξ = shape parameter 
 β= scale parameter 
 u= threshold used to estimate the GPD parameters 

When the specific parameters estimated in Section 3 (ξ: 0.973; β: 11.450 million Yen or 
about 73K Euros) are applied, the formula is: 

ORC at a 99.9% confidence level (in 1 million Yen) = (R+1.77) · (1000·NR) 0.973 − 1.77 

                                                  
31 An annual aggregate loss distribution is generated by combining estimated loss frequency 
distribution and loss severity distribution.  
32 Böcker and Klüppelberg (2005) showed that the ORC can be well approximated by the severity of a 
large single loss when the loss data distribution is heavy-tailed. 
33 See Appendix 3 for the derivation of the formula. 
34 Once the annual frequency of any given loss on the GPD is determined, one can know the frequency 
of any other losses on the GPD, including the loss that corresponds to the ORC. However, the shape of 
the loss severity distribution is determined only above the threshold for the estimation (i.e., u in the 
formula). Thus, NR (loss frequency applied) needs to be the frequency of the losses greater than or 
equal to a given severity of R (≥u). 
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When 100K Euros is used for R (the observation threshold for loss frequency), the 
formula can be written in euro terms as follows: 

 
ORC at a 99.9% confidence level (in Euros) = (100,000 + 11,201)·(1000·NR) 0.973 − 

11,201 
where, 
 NR stands for the annual frequency of losses ≥ R (=100K Euros). 
 
 
 

4.2 Approximation error due to the single-loss approximation 
Since our formula utilizes the approximation of Böcker and Klüppelberg (2005) 

(single-loss approximation), its approximation error should be examined. 
We have done this by comparing ORCs calculated by our formula with the ones 

calculated by a conventional loss distribution approach (see Table 4 for the outline of the 
two calculation methods).35 

The ORCs calculated by the two methods differ only between 0.6% and 1.6% for all 
the three cases, where the annual frequency of losses greater than or equal to 10 million 
Yen is 10, 100 or 1,000 (Table 5). 

This means that our formula’s error due to the single-loss approximation is negligible 
in practical use, even if the formula were applied widely to banks other than the 18 
sample Japanese banks. No banks, not even the biggest overseas banks, are likely to incur 
more than 1,000 losses annually that are greater than or equal to 10 million Yen (63K 
Euros).36 

Note that the above approximation errors assume specific conditions: the loss severity 
distribution is extremely heavy tailed (ξ is close to 1) and the confidence level is very high 
(99.9%). When these conditions are not satisfied, approximation errors can be bigger.37

                                                  
35  Degen (2010) provides an analytical framework to estimate the accuracy of single-loss 
approximation. The estimated error according to their analytical framework is consistent with our 
simulation results. 
36 According to the medians for the 18 sample banks, the annual frequency of losses greater than or 
equal to 10 million Yen (about 63K Euros) per total assets of 100 billion Yen (about 634 million Euros) 
is about 0.021. This corresponds to an annual frequency of 21 for a bank with total assets of 100 trillion 
Yen (about 634 billion Euros). 
 LDCE2008 reports that the annual frequency of losses greater than or equal to 100K Euros per total 
assets of 1 billion Euros is about 0.19 (the median figure for the 118 banks, source: Table ILD9 in 
LDCE2008), which corresponds to an annual frequency of 190 for a bank with total assets of 1 trillion 
Euros.  
37 Please refer to Böcker and Sprittulla (2008) as well as Degen (2010) regarding the approximation 
error of single loss approximation. 
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Table 4: Comparison of our formula with conventional LDA 
 
 (a) Our formula (b) Conventional LDA 

for comparison 
Outline Analytical approximation of 

Operational Risk VaR (“Single loss 
approximation” by Böcker and 
Klüppelberg). 

A frequency distribution and a loss 
severity distribution are combined in a 
Monte Carlo simulation to generate an 
aggregate loss distribution to calculate 
Operational Risk VaR. 

Loss 
frequency 
distribution 

No specific distribution is 
assumed.38 Observed annual 
frequency (e.g., average for the past 
few years) is used directly. 

A Poisson distribution is assumed 

Loss severity 
distribution 

“Common loss severity distribution,” which is derived by fitting the GPD to 
the excess value over 10 million Yen. GPD parameters are estimated by the 
ML Method. 

Computation Approximation by Böcker and 
Klüppelberg (2005). No simulation 
is used. 

Simulation of 100,000,000 trials 

Losses smaller 
than 10 
million Yen  

Theoretically, all the losses are 
included in the calculation 

No loss smaller than 10 million Yen is 
included in the calculation. 

 

 

 
Table 5: Single Loss Approximation errors 

 
Annual 

frequency 
of losses 

(a) ORC from our formula 
(unit: 100 million Yen) 

(b) ORC from conventional 
LDA (unit: 100 million Yen) (a)/(b) 

10 918 924 99.4%
100 8,624 8,731 98.8%

1,000 81,039 82,380 98.4%

 

                                                  
38 The approximation by Böcker and Klüppelberg assumes a specific loss severity distribution, but it 
does not assume a specific loss frequency distribution. This is because no tail information for frequency 
remains in the approximation formula and only the expected frequency remains. On the other hand, 
(b) in Table 4 assumes a Poisson distribution for frequency. 
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4.3 Performance of the formula 
In this section, we assess the performance of the formula, utilizing the criteria that 

Dutta and Perry (2006) presented. The assessment is inevitably subjective, but we think 
that the overall performance is good enough to be used as a benchmark and a 
management tool. 
 

The criteria Dutta and Perry (2006) presented are: 
a. Good Fit — Statistically how well does the method fit the data? 
b. Realistic — If a method fits well in a statistical sense, does it generate a loss 

distribution with a realistic capital estimate? 
c. Well-Specified — Are the characteristics of the fitted data similar to the loss data and 

logically consistent? 
d. Flexible — How well is the method able to reasonably accommodate a wide variety 

of empirical loss data? 
e. Simple — Is the method easy to apply in practice? 
 

4.3.1 Good Fit 
In Section 3, we examined the goodness-of-fit of the common loss severity 

distribution. Although not perfect, it is as good as the models banks currently use. It can 
be implemented by individual banks at least as an approximation, as long as it is used 
with the caveat that goodness-of-fit will vary from bank to bank. 
 

4.3.2 Reality of the capital estimates 
To assess how realistic an ORC the formula gives, we have calculated the ORC by 

inputting the annual loss frequency per gross income of 100 billion Yen (634 million 
Euros) reported by the 18 sample banks,39 which we compare with the BIA capital (15% 
of the gross income). The results (Table 6) show that the ORC calculated using this 
formula is about three quarters of the size of the BIA capital when the medians for the 
annual loss frequency of the 18 sample banks are applied. These medians can be 
construed as typical figures for the sample banks. 

                                                  
39 The figures from each bank are listed in ascending order. The figure in the middle is the median (in 
our case, the average of the 9th and 10th figures, as there are 18 banks). The interquartile is a 
combination of the 25th percentile and 75th percentile. For example, the 25th percentile is the interior 
division of the ratio of 1 to 3 between the 5th and 6th figures (e.g., provided that the 5th figure is 40 
and the 6th is 50, the 25th percentile is 42.5). In other words, we calculated the 25th and 75th 
percentile, assigning the 0th percentile to the minimum figure and the 100th percentile to the 
maximum figure. 
 Similar figures for global and regional (Australia, Europe, Japan, North America, Brazil/India) banks 
are available in the LDCE2008. 
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Whether the results are realistic or not is a matter of interpretation, but they are not far 
from the ORC figures calculated by banks themselves. Given that many ORC models, 
when they are being developed, produce apparently unrealistic figures, the formula 
works quite well in this respect.  

Even when the same parameters are applied to banks outside of Japan,40 the estimated 
ORCs remain realistic. The estimated ORCs can be about three times or four times as 
large as the BIA capital or equal to the gross income for some banks. This may look too 
conservative when compared to the ORCs currently calculated by banks but it may reflect 
the reality more accurately; indeed, anecdotal evidence reports losses of this size from 
time to time around the world. Some may argue that not many banks have failed because 
of operational risk, which also suggests that the formula is too conservative. However, a 
single operational risk loss corresponding to the 99.9% ORC from this formula is still 
not necessarily large enough to break a bank. 

 
Table 6: ORC based on the frequency reported by the 18 sample banks 

(per gross income of 100 billion Yen, about 634 million Euros)41 
 

Loss threshold 
10 million Yen 
(63K Euros) 

15.78 million Yen 
(100K Euros) 

100 million Yen 
(634K Euros) 

Annual frequency of losses ≥ 
loss threshold 

1.147 
(0.777–1.682) 

0.8789 
(0.4372–1.540) 

0 
(0–0.159) 

ORC in billions of Yen 
(Corresponding BIA capital 
is 15 billion Yen) 

11.1 
(7.6–16.2) 

12.8 
(6.5–22.2) 

0 
(0–14.1) 

 
Legend 

 
 

4.3.3 Well-Specified 
This criterion deals with the question of whether the characteristics of the fitted data 

are similar to the loss data and logically consistent. In other words, we will be evaluating 
whether our formula simulates the real world reasonably well, and whether it behaves in 
                                                  
40 As indicated in Section 5 “Applicability of the formula to other banks”, the parameters are 
presumed to be about the same as the Japanese ones. 
41 The ORC calculated by our formula is not exactly proportional to the frequency of losses, as is 
shown in Section 4.3.3 “Well-specified.” When the frequency of losses over the threshold becomes 10 
times as large, the ORC becomes slightly less than 10 times as large, provided that ξ is a little smaller 
than 1. Because of this, the size of the bank (i.e., gross income) influences the results of the calculation: 
the ratio of the ORC to the gross income is smaller for a bank with the same annual frequency of losses 
per gross income, but with a larger gross income. (See also the next footnote.) 

0.1147 
(0.777–1.682) 

 median of the 18 banks 
 the 25th percentile to the 75th percentile of the 18 banks 
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an intuitively and empirically correct manner. 
In order to assess this, we have identified three characteristics of our formula’s 

behavior. These characteristics are intuitively and logically consistent with our 
experience on operational loss data. We also find some aspects of them to be useful as a 
management tool, a fact which also suggests that the formula meets this criterion. 

 
 (i) ORC figures are almost proportional to the variable (annual frequency of losses) 

The ORCs calculated using this formula are almost proportional to the loss frequency 
per year, when ξ is assumed to be 0.973 (Figure 9, Table 7). For example, when the 
annual frequency doubles, the ORC is 2.0 times as much. When the annual frequency 
triples, the ORC is 2.9 times as much.42 

This appears to run counter to the notion that the tail losses determine the ORC. 
However, tail losses determine the ORC in this formula, too. What is unique about this 
formula is that it assumes a stable relationship between the annual loss frequency of 
small or medium sized losses and that of tail losses and that it estimates the severity of a 
single tail loss on this assumption. 
 
 
 ORC (in 100 million Yen) 
 

 

 

 

 

 

 

Annual frequency of losses ≥ 10 million Yen (≈ €63K) 

 
Figure 9: ORC changes with the change in the annual loss frequency 

 

 
Table 7: Some figures in Figure 9 

 
Number of Losses 5 10 15 20 25 

ORC 
(in 100 million Yen) 467 918 1,362 1,801 2,238 

                                                  
42 More accurately, when the frequency is n times bigger, the ORC becomes nξ, provided that  
− (− u + β/ξ) (or −1.77 specifically) is ignored. 
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(ii) ORC figures are insensitive to a small number of huge losses 
On the flipside to (i), a single huge loss does not affect the ORC figures much; it only 

adds the number of losses (t) that are greater than or equal to the threshold. The increase 
in ORC is the same even if the loss is barely greater than the threshold. 
 

(iii) ORC figures are very sensitive to ξ 
Figure 10 indicates the changes in ORC in relation to changes in ξ. The ORC is set 

to 100 when ξ = 0.973. As the graph shows, the ORC calculated by this formula is very 
sensitive to ξ. For example, an increase of ξ from 0.973 to 0.993 increases a bank’s ORC 
by about 18% when the bank annually incurs 10 losses of 10 million Yen or greater. On 
the other hand, a decrease of ξ from 0.973 to 0.953 decreases its ORC by about 15%. This 
very high sensitivity to ξ could pose challenges if an individual bank tried to determine its 
own specific ξ and account for its validity. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Shape parameter ξ 
 

Figure 10: ORC changes with the change in ξ 
 
 
Whether or not one believes that the formula is logical and intuitively correct depends 

to a large extent on whether one considers the characteristics of (i) and (ii) above to be 
realistic.  

These characteristics, which are two sides of the same coin, are consistent with the 
view that the ORC is determined by tail losses, which can be estimated by the frequency 
of relatively small losses and that a bank’s operational risk profile shows up through this 
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frequency. 
This view may appear exotic at first glance to theorists who are accustomed to 

thinking that tail losses determine the ORC, not the frequency of smaller losses. However, 
it is consistent with what we often hear from practitioners: 
• Containing small losses can lead to reducing the probability of big losses (this idea 

has something in common with the broken window theory). 
• A single huge loss does not necessarily indicate an abrupt increase in operational 

risk. On the other hand, change in the loss frequency is often the reflection of 
changes in underlying business environment and internal control factors (BEICFs) 
or loss data collection procedures. 

• The occurrence of losses is relatively easy to control, but their severity is hard to 
control (in many cases, it depends on chance). 
 
In addition, the characteristics of (i) and (ii) above are useful for many aspects of risk 

management, which supports our view that the formula is realistic and intuitively correct. 
The first useful aspect is the stability of the ORC. This stems from the fact that the 

ORC changes in proportion to the loss frequency, which is usually much more stable than 
the severity of losses; a single huge loss that occurs by chance does not cause too much 
fluctuation in capital estimates.43 

The second aspect is the near additivity of the risk amount, i.e., the risk of a bank is 
the same as the total amount of the risks for the different parts of the bank. This also is due 
to the near-linear way the ORC, as calculated by this formula, behaves in relation to the 
loss frequency. Thanks to this additivity, it is easy to calculate the ORC in the case of a 
merger or division among banks or businesses. In addition, the allocation of the ORC is 
easier. Banks can determine reasonable figures by allocating the ORC simply according 
to the number of losses above a certain threshold if they assume that the loss severity 
distributions are identical across business lines. See Appendix 2 for an analysis at the 
business-line level. 

The third aspect is that these characteristics provide risk managers with a good 
reason to reduce the number of relatively small losses, in the hope that it will have the 
effect of reducing the eventuality of huge losses. While the goal of risk management is 
preventing huge losses, this sets an attainable goal in day-to-day risk management. 

 

                                                  
43 It is assumed that a huge loss does not alter the shape of the common loss severity distribution. This 
assumption is reasonable, given the result of the sensitivity analysis conducted in Figure 7 (bottom). 
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4.3.4 Flexibility  
The formula is applicable to any bank over time as long as the common loss severity 

distribution is reasonably fitted; the difference in risk profile among banks is assumed to 
be reflected in the loss frequency. 

What matters is the goodness-of-fit of the common loss severity distribution to banks 
other than the 18 sample banks. This issue is dealt with in the next section (5. 
“Applicability of the formula to other banks”). 
 

4.3.5 Simplicity  
This formula is very simple, which also makes the whole process transparent. It uses 

only one variable, the annual loss frequency, which is easy to handle. On top of that, the 
formula has the advantage of always giving the same ORC for the same variable 
because it does not use Monte Carlo simulation.  

The challenge in implementation lies in the data collection: the same criteria in loss 
data collection as the LDCE2008 is required to apply the formula as it is. 

 
 

5. Applicability of the formula to other banks 
 

So far, we have derived an ORC formula based on the loss severity distribution fitted 
to the 18 sample Japanese banks’ losses. However, it is highly likely that our formula is 
applicable to other Japanese banks as well and even to overseas banks without the need 
for many changes. We can say this because the results of various loss data collection 
exercises and empirical studies on ORC measurement suggest that the loss severity 
distribution we estimated on the 18 sample Japanese banks fits well to a wider range of 
banks. 

We expect that this will be confirmed by the accumulation of loss data in the future, 
but in the meantime, this section shows the available published data and the previous 
research. 
 

5.1 Results of various loss data collection exercises 
Some results of loss data collection exercises are available to obtain a rough shape of 

loss severity distribution. The shapes of the loss severity distribution inferred from the 
published figures of the LDCE2008 or U.S. data collection exercise44 (2004 Loss Data 

                                                  
44 Federal Reserve System, Office of the Comptroller of the Currency, Office of Thrift Supervision, 
Federal Deposit Insurance Corporation (2005) 
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Collection Exercise for Operational Risk; “US LDCE2004” hereafter) are shown in 
Figures 11, 12 and 13. All of them suggest a GPD with a ξ of about 1. 

Figure 11 plots the frequency of losses per gross income of 1 billion Euros for 
various severity thresholds in a similar manner as Figures 1 to 3. The means or medians 
across the 118 banks around the world that reported in the LDCE2008 are used.45 

The plotted data points are approximately on a straight line. The slope of the line is 
approximately −0.97 when a simple regression is applied. Given that the slope is roughly 
−1/ξ (ξ is the shape parameter of the GPD), ξ for the LDCE2008 banks is inferred to be 
around 1.03 when the loss is between 20K and 100 million Euros (the maximum 
amount of loss whose frequency is available), which is not far from the figure estimated 
for the 18 Japanese banks (0.973). 

Figure 12 plots losses in the same manner by region using the figures available in 
LDCE2008 (source: Table ILD7 in LDCE2008). It shows great similarity in loss severity 
distributions, a nearly straight line with a slope of −1 on a double-log plot, among 
various regions (Australia, Europe, Japan and North America) except for Brazil/India. 
Indeed, losses from regions other than Brazil/India are difficult to distinguish in the plot. 

Figure 13 also plots losses in the same manner using the figures for US banks 
available in US LDCE2004. The plot is also very similar to the previous ones. 

                                                  
45 “Mean” and “Median” in Figure 11 are used in the following ways. 

Mean: Frequency is calculated for the dataset for all the losses from all the 118 sample banks 
lumped together; 118 banks are treated as if they were merged into one single bank. 

Median: Frequency is the median across the individual figures for each of the 118 sample banks. 
The mean is used in the plot when it is available, otherwise the median is used. 
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* Annual loss frequency ≥ severity indicated on the x-axis 
(per gross income of €1 billion, in log terms) 

 
Figure 11: Severity distribution for 118 banks around the world 

 
 
 

Table 8: Actual value of the data points for Figure 11 
(before their logarithms are taken) 

 
Severity 
(Euros) 
(x-axis) 

Frequency 
(y-axis) 

Source*

20,000 26.60  ILD9 
27,632 19.95  ILD7 
41,916 13.30  ILD7 
82,608 6.65  ILD7 

100,000 5.84  ILD6 
418,400 1.33  ILD7 

1,000,000 0.61  ILD6 
2,000,000 0.32  ILD6 
5,000,000 0.13  ILD6 

10,000,000 0.06  ILD6 
100,000,000 0.007  ILD6 

* Table name in the LDCE2008 
 

The figures in the table are obtained from the published 
figures in the LDCE2008 as follows. 
 
Figures from ILD9: The loss frequency per gross income of 
€1 billon (cross-bank medians) reported in ILD9. 
 
Figures from ILD6: Calculated from the aggregated loss 
frequency figures for all the banks reported in ILD6. 
(i) Divide (# of losses ≥ specific severity) by (# of losses ≥ 
€20K). 
Example: In the case of losses that are €100 million or greater, 
divide 41 (losses ≥ €100 million) by 155,713 (losses ≥ €20K).
(ii) Multiply (i) by the annual frequency of losses ≥ €20K per 
gross income of €1 billion. The result is the frequency of the 
losses specified in (i). 
Example: In the case of losses that are €100 million or 
greater: 41/155,713 × 26.6 = 0.007 
 
Figures from ILD7: 
(i) Obtain the severity of the loss for a specific percentile 
point (e.g. €418,400 for fifth percentile) from ILD7. 
(ii) Multiply (i) by the annual frequency of losses ≥ €20K per 
gross income of €1 billion. The result is the frequency of the 
losses specified in (i) (e.g., 26.6 × 5% = 1.33) 
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Figure 12: Severity distribution by regions 

 
 
 
 

Table 9: Actual value of the data points for Figure 12 
(before their logarithms are taken) 

 
 

 

 

 

 

 
* Percentile points among the losses over €20K 

Percentile points* 100% 75% 50% 25% 5% 
Frequency 1.00 0.75 0.50 0.25 0.05 
Australia 20,000 28,883 41,781 75,966 476,708 
Europe 20,000 27,341 41,765 82,004 400,000 
Japan 20,000 27,890 42,357 95,093 511,815 
North America 20,000 27,900 43,234 84,462 425,314 
Brazil/India 20,000 26,472 37,962 65,100 201,416 

Australia 
Europe 
Japan 
North America 

Brazil/India All groups 

 
( lossesof numbertotal

axis)-the on severity(lossesofnumber
Frequency*

)

x

EurosK20≥

≥
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Figure 13: Severity distribution observed in US 2004 LDCE 

 
 
 
 

Table 10: Actual value of the data points for Figure 13 
(before their logarithms are taken) 

 

 

 

 

 

 

 

 

 

 
* Table name in the US LDCE2004 

 

Severity ($) 
(x-axis) 

Frequency
(y-axis) 

Source* 

10,000 72.035 Table Appendix 3a, Table 8 
13,436 54.026 Table 7a 
20,000 37.530 Table 8 
21,277 36.017 Table 7a 
42,155 18.009 Table Appendix 3a 
50,000 15.704 Table Appendix 3a 

100,000 7.170 Table 8 
206,492 3.602 Table 7a 

1,000,000 0.576 Table 8 
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5.2 Empirical studies 
Many empirical studies on ORC have estimated shape parameters around 1 for GPD 

(Table 11).  
 

Table 11: ξ estimates of empirical studies on ORC with loss data 
(Typical figures from each study are indicated). 

 
Data Unit of measure ξ estimates Note 

6 US banks, each 
for one year 
(LDCE2002) 

Enterprise level for 
each bank 

Estimates for six banks 
Minimum: 0.87, maximum: 1.28 
average: 1.01, median: 0.98 

de 
Fontnouvelle 
et al. (2004) 

89 banks around 
the world, each for 
one year 
(LDCE2002) 

All the losses for all 
the sample banks 
broken down into 8 
business lines 

Estimates for eight business lines. 
Minimum: 0.85, maximum: 1.39 
average: 1.13, median: 1.18 

Moscadelli 
(2004) 

7 US banks 
 

Enterprise level for 
each bank 

Estimates for seven banks when the 
threshold is set so that 10% of the data 
are in the tail 
Minimum: 0.89, maximum: 1.20 
average: 1.02, median: 1.01 

Dutta and 
Perry (2006) 

Japanese banks 
(sample size not 
specified), for 10 
years 

All the losses for all 
the sample banks 

Estimates when the threshold is set to 
the minimum loss amount in the dataset 
Maximum likelihood method: 1.10 
PWM method: 0.98 

Mori et al 
(2007) 

An Australian bank 
for 9 years 

Enterprise level Maximum likelihood method: 1.04 
PWM method: 0.81 

John Evans 
SF Fin et al. 
(2008) 
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6. Final words 
 

We have examined the hypothesis that the common loss severity distribution for 
operational risk loss data fits reasonably well to a wide range of banks. Assuming this 
hypothesis, we have derived a simple formula that can be used as a benchmark for ORC. 

In spite of the formula’s simplicity, it is also risk sensitive and has other good qualities 
as well, i.e., it is well specified and it produces reasonably realistic results. The fact that 
the formula seems to work well in practical applications suggests that the common loss 
severity distribution hypothesis is effective in approximating banks’ loss severity 
distributions. 

Of course, the proposed formula comes with several challenges and cannot be used as 
an AMA model as it is. First, it is partly true that recent BEICFs are not reflected. The 
formula stands on the assumption that BEICFs are reflected in the loss frequency and that 
the loss severity distribution retains its shape over time and across banks. However, the 
latter assumption is for the purpose of the simplicity of the approximation and to 
circumvent the possibility that data for individual banks are scarce. Some banks will not 
wish to maintain it in their more sophisticated models. 

In addition, the formula may give banks distorted incentives. The ORC figures 
derived from this formula are insensitive to a small number of huge losses, which may 
encourage banks only to reduce the number of relatively small losses rather than contain 
huge losses directly.  

For the above reasons, it is completely reasonable for individual banks to move 
toward more sophisticated models that reflect their risk profiles in a more granular way, 
by, for example, utilizing scenario analyses and BEICF measures.46 

When it comes to implementation, measurement of the frequency of losses poses a 
number of challenges, the first of which is determining the severity of losses (R in the 
formula) in order to measure the annual loss frequency (NR). If the loss severity 
distribution for an individual bank is exactly the same as the common loss severity 
distribution, any R (though R must be greater than or equal to the threshold used to 
estimate the GPD parameters) gives the same amount of ORC. However, since few banks’ 
actual loss severity distributions can be expected to have exactly the same shape as the 
                                                  
46 For example, the following are possible measures: 
• Using scenario analysis to forecast possible events in the future. This adds some conservatism to 

the ORC and also gives banks incentives to take measures to contain possible events; 
• Estimating a huge loss for events that can be more accurately estimated* through other measures 

and comparing this with the result given by the formula, and adding appropriate conservatism to 
the result. 

* Damage by earthquakes can be estimated more accurately by utilizing the knowledge from 
seismic science (see, for example, Kanemori (2006)). 
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common severity distribution, this formula would most likely give a different ORC for a 
different R. For this reason, banks would be held accountable for their choice of R. 

Once R is determined, the next challenge is how to determine the specific frequency 
of losses (NR) used in the formula, e.g., observation years or the calculation of NR from 
the observations.47 This is not an easy task and cannot be done automatically. NR should 
be the best prediction for the coming year based on the latest BEICFs, but it should not be 
too subjective. 

Banks with few or no losses greater than or equal to 10 million Yen (63K Euros) face 
another unique implementation challenge: they have no frequency figures for input into 
the formula. They may need to develop a reasonable model to forecast the number of 
losses over 10 million Yen and use that number as input for the formula.48 

The parameters of the formula are determined only on the basis of the 18 sample 
Japanese banks. However, as we have seen in Section 5, based on a variety of public 
information we think that the estimated parameters will not change much when the 
sample data are extended to a wider group of banks, be they foreign or domestic. 

Further analysis on additional data is necessary to confirm this. We hope that our 
formula is validated against a wider range of datasets. We also hope that this paper 
encourages quests for a better benchmark for ORCs, possibly standing on different and 
novel ideas.

                                                  
47 The following may prove to be issues in determining the frequency to be used in the formula: 

• Observation periods for the frequency, e.g., the most recent three years, five years or all the years when 
the frequency is known; 

• The calculation of the observed frequencies over time, e.g., average, weighted average or the maximum; 
• The effects of a new or a discontinued business; 
• The extent to which the frequency to be used in the formula may be adjusted subjectively, e.g., 

determining the frequency by extrapolating the most recent trend; 
• How much conservatism should be incorporated when the observation period is too short. 

48 Inputs for such a model may include: 
• the frequency of losses smaller than 10 million Yen; 
• the frequency of near misses; 
• other BEICFs. 

  Using these measures also provides incentives to properly control these figures. 
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Appendix 1 Non-parametric tests for the commonality of loss severity 
distributions 
 

In this appendix, we perform a non-parametric test to explore the commonality of 
loss severity distributions among 18 sample banks. We conduct the Kruskal-Wallis test49 
to test the null hypothesis that the loss severity distribution is identical across 18 sample 
banks versus the alternative that losses in at least one bank do not follow the same loss 
severity distribution (Figure A1-1). 

When the significance level is set at 5 or 10%, the null hypothesis is not rejected in 
most of the cases if the threshold for the losses to be tested is set at 15 million Yen (about 
95K Euros) or higher. This result gives one of the rationales for assuming that the 
common severity distribution can be used as an individual banks’ loss severity 
distribution. 

The test is conducted against losses greater than or equal to 100 different thresholds 
between 1 million Yen (about 6K Euros) and 100 million Yen (about 634K Euros), in 1 
million Yen increments. For all the thresholds that are below 15 million Yen (about 95K 
Euros), the null hypothesis is rejected at the significance level of 5%. For most of the 
thresholds between 15 million Yen and 100 million Yen, the null hypothesis is not 
rejected at the significance level of 5 or 10%. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure A1-1: Kruskal-Wallis test 

                                                  
49 De Fontnouvelle et al. (2005) conducted a similar test (Kruskal-Wallis test) on big U.S. banks and 
arrived at a similar result: “we cannot reject the hypothesis that the distribution of losses is the same 
across large firms.” 
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Appendix 2 Analysis at the level of business line or event type 
 

This appendix examines loss severity distributions for individual Basel business lines 
or event types.50 Some business lines or event types have a very small number of data 
points and the results of this appendix should be interpreted with caution. 

 
A2.1 Commonality of severity distributions for individual business 
lines or event types 
 

We conduct Kruskal-Wallis tests to test the commonality of distributions across 
individual business lines or across event types in the following manner. 
• Datasets tested: datasets in which losses from the 18 sample banks are first lumped 

together and then broken down by the eight individual business lines or the seven 
event types. 

• Null hypothesis for business lines: loss severity distributions are identical across 
eight business lines when the 18 banks’ losses are lumped together by business line. 
(The alternative: losses for at least one business line do not come from the identical 
distribution.) 

• Null hypothesis for event types: loss severity distributions are identical across 
seven event types when the 18 banks’ losses are lumped together by event type. 
(The alternative: losses for at least one event type do not come from the identical 
distribution.) 

• Tests conducted: for both the null hypotheses, we test against losses greater than or 
equal to 100 different thresholds from 1 million Yen (about 6K Euros) to 100 
million Yen (about 634K Euros), in increments of 1 million Yen. 

 
Figure A2-1 reports the test results. The p-values for the across-business-line tests are 

greater than 10% for most of the thresholds of 8 million Yen or higher (about 51K Euros), 
so we cannot reject the null hypothesis that the loss severity distribution of losses is the 
same across business lines for losses of 8 million Yen or greater. On the other hand, the 
p-values for the across-event-type-tests are under 5% for most of the thresholds, requiring 
us to reject the null hypothesis for most of the thresholds. 
 

                                                  
50 See Table A2-5 for the abbreviations of the Basel business lines and event types. 
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Figure A2-1: Kruskal-Wallis test across business lines or event types 

 
 

A2.2 Loss severity distribution for individual business lines 
Here we estimate a severity distribution for each of the eight datasets corresponding 

to eight individual business lines for all the 18 banks lumped together. Assuming that 
each distribution is the GPD, we estimate GPD parameters with a threshold of 10 million 
Yen (about 63K Euros) using the ML method. We then conduct goodness-of-fit tests for 
the estimated distributions. 

The results are indicated in Table A2-1. ξs for individual business lines range from 
0.56 to 1.38, indicating a very different shape of distribution by business line. 

However, it is reasonable to suppose that, as more data accumulate, the ξs for 
individual business lines may converge. We expect this, given that the divergence in ξs 
might be the result of the small sample size for each individual business line. In addition, 
the results presented in Section A2.1 in this appendix and in Table A2-2 below suggest 
that the loss severity distributions across business lines are likely to be identical. 

Note that the arithmetic average of ξs for individual business lines is 0.96 (the 
weighted average, by the number of losses is 1.01), which is near the ξ estimate for the 
whole dataset (0.973). 

 
 

Threshold (in 1 million Yen) 
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Table A2-1 Distribution estimates and their goodness-of-fit for business lines 
 

 BL1 BL2 BL3 BL4 BL6 BL7 BL8 
Number of losses 11 44 224 480 38 34 37
β (10K Yen) 1,485 1,105 1,340 1,032 1,195 1,628 1519
ξ 1.38 1.17 1.01 0.92 1.21 0.56 0.84
KS 0.73 0.85 0.76 0.86 0.88 0.91 0.88
CvM 0.83 0.85 0.68 0.81 0.93 0.88 0.83
ADup 0.56 0.01 0.18 0.10 0.17 0.18 0.29
AD2

up 0.56 0.01 0.35 0.08 0.15 0.31 0.31
* No figures for BL5 are shown, as the sample size is too small (less than 10). No figures for the losses are indicated 

where the business line is not known. 
** P-values for goodness-of-fit tests (KS, CvM, ADup, and AD2

up) are reported. 

 

Table A2-2 reports the results of the goodness-of-fit tests of the common loss severity 
distribution for the integrated dataset of the 18 sample banks (the GPD with a ξ of 0.973) 
to the business-line breakdown thereof. The null hypothesis is that the observed losses for 
individual business lines of the integrated dataset of the 18 banks follow the common loss 
severity distribution (the alternative: the observed losses for individual business lines of 
the integrated dataset of the 18 banks do not follow the common loss severity 
distribution). The tests that put more weight on the body fit (KS, CvM) do not reject the 
null hypothesis for any of the eight business lines, whereas the tests that put more weight 
on the tail fit (ADup and AD2

up) reject the null hypothesis for some business lines. 
 

Table A2-2 Goodness-of-fit of the common loss severity distribution 
at the business-line level 

 
 BL1 BL2 BL3 BL4 BL6 BL7 BL8 
KS 0.43 0.88 0.63 0.52 0.91 0.85 0.75 
CvM 0.61 0.96 0.64 0.53 0.88 0.79 0.71 
ADup  0.01 0.00 0.18 0.17 0.05 0.27 0.32 
AD2

up 0.00 0.00 0.11 0.09 0.02 0.29 0.17 
* No figures for BL5 are shown, as the sample size is too small (less than 10). No figures for the losses are indicated 

where the business line is not known. 
** P-values for goodness-of-fit tests (KS, CvM, ADup, and AD2

up) are reported. 

 

A2.3 Loss severity distribution for individual event types 
Here we estimate a severity distribution for each of the seven datasets corresponding 

to seven individual event types for all the 18 banks lumped together. Assuming that each 
distribution is the GPD, we estimate GPD parameters with a threshold of 10 million Yen 
(about 63K Euros) using the ML method. We then conduct goodness-of-fit tests for the 
estimated distributions. 

The results are indicated in Table A2-3. ξs for individual event types range from 0.32 
to 1.23, indicating a very different shape of distribution by event types. 
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However, similar to estimates made at the business line level, it is reasonable to 
suppose that the ξs for individual event types may converge as more data are accumulated. 
We expect this, given that the divergence in ξs might be the result of the small sample size 
and in view of the results presented in Table A2-4 below, which do not always reject the 
hypothesis that the observed losses for individual event types follow the common loss 
severity distribution. 

Note that the arithmetic average of ξs for individual business lines is 0.92 (weighted 
average by the number of losses is 0.89). 
 

Table A2-3 Distribution estimates and goodness-of-fit for event types 
 

 ET1 ET2 ET3 ET4 ET5 ET6 ET7 
Number of losses 61 106 23 153 23 36 479
β (10K Yen) 2,907 1,056 1,024 1,866 1,233 919 990
ξ 0.97 0.84 1.12 1.17 0.32 1.23 0.80
KS 0.84 0.66 0.85 0.82 0.75 0.56 0.99
CvM 0.79 0.57 0.83 0.86 0.70 0.58 0.99
ADup 0.19 0.28 0.04 0.22 0.09 0.13 0.00
AD2

up 0.49 0.08 0.09 0.31 0.24 0.09 0.00
* No figures for the losses are indicated where the event type is not known. 
** P-values for goodness-of-fit tests (KS, CvM, ADup, and AD2

up) are reported. 

 

Table A2-4 reports the results of the goodness-of-fit tests of the common loss severity 
distribution for the integrated dataset of the 18 sample banks (the GPD with a ξ of 0.973) 
to the event-type breakdown thereof. The null hypothesis is that the observed losses for 
individual event types of the integrated dataset of the 18 banks follow the common loss 
severity distribution. (The alternative: the observed losses for individual event types of 
the integrated dataset of the 18 banks do not follow the common loss severity 
distribution.) The tests that put more weight on the body fit (KS, CvM) do not reject the 
null hypothesis for any of the seven event types, whereas the tests that put more weight 
on the tail fit (ADup and AD2

up) reject the null hypothesis for some event types. 
  

Table A2-4 Goodness-of-fit of the common loss severity distribution 
at event-type level 

 
 ET1 ET2 ET3 ET4 ET5 ET6 ET7 
KS 0.50 0.53 0.91 0.57 0.44 0.69 0.53 
CvM 0.49 0.53 0.88 0.57 0.41 0.66 0.53 
ADup  0.05 0.28 0.00 0.08 0.42 0.01 0.08 
AD2

up 0.01 0.06 0.00 0.01 0.04 0.00 0.00 
* No figures for the losses are indicated where the event type is not known. 
** P-values for goodness-of-fit tests (KS, CvM, ADup, and AD2

up) are reported. 
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Table A2-5 Business lines and event types  
 
These tables indicate the abbreviations of the Basel business lines and event types. 
 
 Business lines 

  Basel Level 1 Business Lines 
BL1 Corporate Finance 
BL2 Trading & Sales 
BL3 Retail Banking 
BL4 Commercial Banking 
BL5 Payment and Settlement 
BL6 Agency Services 
BL7 Asset Management 
BL8 Retail Brokerage 

 
 Event types 

  Basel Level 2 Event Types 
ET1 Internal Fraud 
ET2 External Fraud 
ET3 Employment Practices and Workplace Safety 
ET4 Clients , Products & Business Practices 
ET5 Damage to Physical Assets 
ET6 Business Disruption and System Failures 
ET7 Execution , Delivery & Process Management 
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Appendix 3 Derivation of the simple ORC formula 
 

Approximate ORC (one-year holding period, confidence level c) can be calculated 
with the following simple formula 

( ) ( )[ ] ( )ξβuNcξβuR ξ
R +−−⋅−⋅+−= 11ORC  

 
where 

c: Confidence level (e.g., 0.999 [=99.9%] according to regulations) 
R: Threshold of loss amount (e.g., 20 million Yen), R ≥ u  
NR: Annual number of losses ≥ R 
ξ: Shape parameter of the GPD 
β: Scale parameter of the GPD 
u: Threshold of the losses used in the estimation of the GPD (10 million Yen) 
 

The formula is derived through the single loss approximation proposed by Böcker, C. 
and Klüppelberg as follows. 

 
Let X be a random variable for loss severity and F be a loss severity distribution. The 

excess distribution over a large threshold u is given by 
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The excess distribution Fu describes the distribution of x = (X - u). (x: the excess loss 
severity over the threshold u when the loss severity X exceeds u.) 
 

Let the distribution function of the GPD be given by 
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where ξ is a shape parameter and β is a scale parameter.  
 
The theorem of Pickands-Balkema-de Haan states that the following equation holds 

true when u is large enough. 

)()( xGxF ξ,βu ≅  
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This means that we can approximate the excess distribution Fu by GPD Gξ,β if we set 
appropriate parameters ξ and β for a large threshold u even when we do not know the 
original (underlying) distribution F. 

Let ( ) ( )xFxF −= 1 , ( ) ( )xGxG ξ,βξ,β −= 1  for F (loss severity distribution) and Gξ,β 

(GPD with parameters ξ and β), then, 
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Eliminating ( )uF  utilizing ( ) ξ
β
ξ uRuFRF

1

)(1)()( −−+=  for given R(≥u), we 

obtain the following equation for any given p (p = F(x), 0 ≤p≤1). 
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Let N be the total annual number of losses, then the ORC at the confidence level of c 
can be approximated through the single loss approximation as follows. 
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By substituting NN(R)F R≅ , we obtain the ORC formula described in Section 4. 

⎟
⎠
⎞

⎜
⎝
⎛ +−−⎟

⎠
⎞

⎜
⎝
⎛ ⋅

−
⋅⎟
⎠
⎞

⎜
⎝
⎛ +−=

ξ
βuN

cξ
βuR 

ξ

R1
1ORC



 49

References51 
 

Basel Committee on Banking Supervision (2009a), “Observed range of practice in key elements of 

Advanced Measurement Approaches (AMA)” (http://www.bis.org/publ/bcbs160b.pdf) 

Basel Committee on Banking Supervision (2009b), “Results from the 2008 Loss Data Collection 

Exercise for Operational Risk” (http://www.bis.org/publ/bcbs160a.pdf) 

Basel Committee on Banking Supervision (2004), “International Convergence of Capital 

Measurement and Capital Standards: A Revised Framework” 

(http://www.bis.org/publ/bcbs107.pdf) 

Böcker, C. and Klüppelberg, C. (2005), “Operational VaR: A Closed-Form Approximation,” RISK 

Magazine, 18(12), pp. 90–93 

(http://www-m4.ma.tum.de/Papers/Klueppelberg/oprisk051005.pdf) 

Böcker, K. and Sprittulla, J (2008), “Operational VAR: meaningful means,” RISK Magazine, 

December, pp. 96–98 (http://www-m4.ma.tum.de/Papers/Klueppelberg/kb_sprittulla.pdf) 

Chernobai, A., Rachev, S., and Fabozzi, F. (2005), “Composite Goodness-of-Fit Tests for 

Left-Truncated Loss Samples,” Technical Report, University of California Santa Barbara 

(https://statistik.ets.kit.edu/download/doc_secure1/tr_composite_goodness_tests.pdf) 

de Fontnouvelle, P. and Rosengren, E. (2004), “Implications of Alternative Operational Risk 

Modeling Techniques,” Federal Reserve Bank of Boston 

(http://www.nber.org/chapters/c9617.pdf) 

de Fontnouvelle, P., V. DeJesus-Rueff, Jordan, J. and Rosengren, E. (2005), “Capital and Risk: New 

Evidence on Implications of Large Operational Losses,” Federal Reserve Bank of Boston 

(http://www.bostonfed.org/economic/wp/wp2003/wp035.pdf) 

De Koker, R. (2006), “Operational Risk Modelling: Where Do We Go From Here?” The Advanced 

Measurement Approach to Operational Risk, Risk Books, pp. 37–57 

Degen, M. (2010), “The Calculation of Minimum Regulatory Capital using Single-Loss 

Approximations,” Journal of Operational Risk 5(4), pp. 1–15 

(http://www.math.ethz.ch/~degen/Degen_accuracy_2010.pdf) 

Dutta, K. and Perry, J. (2006), “A Tale of Tails: An Empirical Analysis of Loss Distribution Models 

for Estimating Operational Risk Capital,” Federal Reserve Bank of Boston 

(http://www.bos.frb.org/economic/wp/wp2006/wp0613.pdf) 

(http://www.bos.frb.org/economic/wp/wp2006/wp0613app.pdf) 

Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997), Modelling Extremal Events for Insurance 

and Finance, Springer, Berlin. 

 

                                                  
51 Documents in Japanese are only listed in the Japanese version of the paper. 



 50

Evans SF Fin, J., Womersley, R., Wong, and D, Woodbury, G. (2008), “Operational risks in banks,” 

The Finsia Journal of Applied Finance, 10(2), pp. 9–16 

(http://www.finsia.com/eventPDF/JASSA_Issue2_2008_Pages_9-16.pdf) 

Federal Reserve System, Office of the Comptroller of the Currency, Office of Thrift Supervision, 

Federal Deposit Insurance Corporation (2005), “Results of the 2004 Loss Data Collection 

Exercise for Operational Risk” 

(http://www.bostonfed.org/bankinfo/qau/research/papers/pd051205.pdf) 

Hosking, J. R. M. and Wallis, J. R. (1987), “Parameter and Quantile Estimation for the Generalized 

Parato Distribution,” Technometrics, 29(3), pp. 339–349 

Kanemori, T. (2006), “Seismic Risk Analysis,” presentation at Bank of Japan 

(http://www.boj.or.jp/en/announcements/release_2006/data/fsc0608be10a.pdf) 

(http://www.boj.or.jp/en/announcements/release_2006/data/fsc0608be10b.pdf) 

Mori, A., Kimata, T. and Nagafuji, T. (2007), “The Effect of the Choice of the Loss Severity 

Distribution and the Parameter Estimation Method on Operational Risk Measurement — 

Analysis Using Sample Data —” 

 (http://www.boj.or.jp/en/research/brp/ron_2007/data/ron0712c.pdf) 

Moscadelli, M. (2004), “The modeling of operational risk: experience with the analysis of the data 

collected by the Basel Committee,” the Bank of Italy 

(http://www.bancaditalia.it/pubblicazioni/econo/temidi/td04/td517_04/td517/tema_517.pdf) 

Nešlehová, Johanna, Paul, Embrechts, and Valérie Chavez-Demoulin (2006), “Infinite Mean Models 

and the LDA for Operational Risk," The Journal of Operational Risk, 2006, 1, 3-25. 

 


