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Abstract

In recent years, Japanese monetary policy has been a hot topic when discussing Japan's economy. This
paperpresents empirical analysis of Japanese monetary policy based ontime-varying structural vectorautoregres-
sions(TVSVAR). OurTVSVARincludesamonetary reactionfunction, anaggregatesupply function, anaggregate
demand function, and effective exchange rate determination function. Our TVSVAR is a dynamic full recursive
structural VAR, whichis similarto Primiceri (2005), CanovaandGambetti (2006), andmany relatedpapers. Most
previous TVSVAR studies are based on Markov Chain Monte Carlo method and the Kalman  lter. We, however,
adopt a new TVSVAR estimation method, proposed by Yano (2008). The method is based on the Monte Carlo
Particle  lter and a self-organizing state space model, proposed by Kitagawa (1996), Gordon et al. (1993), Kita-
gawa (1998), Yano (2007b), and Yano (2007a). Our method is applied to the estimation of a quarterly model of
the Japanese economy (a nominal short term interest rate, in ation rate, real growth rate, and nominal effective
exchange rate). We would like to emphasize that our paper is the  rst to analyze the Japanese economy using
TVSVAR. Our analysis indicates that the monetary policy of Japan becomes ineffective in 1990s. Whether the
long-term recession experienced by Japan in the 1990s was caused by aggregate supply factors or aggregate de-
mandfactors isanoftheardquestion. Thispaperconcludes thatbothsupply anddemandfactors contributedto the
10-yearrecession.

Key words : Monte Carlo particle  lter, Self-organizing state space model, time-varying-coef cient,
structural vectorautoregressions, Markov chainprior.
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1 Introduction
In recent years, Japanese monetary policy has been a hot topic when discussing Japan's economy. This pa-
per presents empirical analysis of Japanese monetary policy using time-varying structural vector autoregressions
(TVSVAR). Our TVSVAR includes amonetary reaction function, anaggregate supply function, anaggregate de-
mand function, and effective exchange rate determination function. The changes in coef cients indicate changes in
the correlations among macroeconomic variables. Thus, we are able to analyze changes inthe Japanese economy.
Our approach is related to Uhlig (1997), Cogley and Sargent (2001), Ciccarelli and Rebucci (2003), Cogley and
Sargent(2005), Primiceri (2005), SimsandZha(2006), CanovaandGambetti (2006), andmany studies. Mostpre-
vious studies are based on Markov Chain Monte Carlo method and the Kalman  lter4. In the studies, the random
walk prior (the Minnesota/Litterman prior), proposed by Doan et al. (1984), is assumed on the time-evolutions
of coef cients. The prior is based on linear Gaussian state space modeling 5. Yano (2008), however, proposes a
new TVSVAR estimation method that is based on the Monte Carlo Particle  lter and a self-organizing state space
model, proposed by Kitagawa (1996), Gordon et al. (1993), Kitagawa (1998), Yano (2007b), and Yano (2007a).
A novel feature of Yano (2008) is that it assumes the time evolutions of coef cients are given by Markov chain
processes. We call this assumption the Markov chain prior on time-varying coef cients. Our prior is based on
nonlinearnon-Gaussianstate space modeling. The linearGaussiancase of the Markov chainprior is equivalentto
the random walk prior. Thus, our method is more  exible rather than previous methods. Our method is applied for
the estimation of a quarterly model of the Japanese economy (a nominal short-term interest rate, in ation rate, real
growthrate, and nominal effective exchange rate).

ThereexistpreviousstudiesonJapanesemonetary policy basedonBayesianstatistical approach: Kimuraetal.
(2003), Fujiwara (2006), and Inoue and Okimoto (2007) 6. Kimura et al. (2003) estimates time-varying reduced-
form VAR models based on the Kalman  lter. Fujiwara (2006) and Inoue and Okimoto (2007) analyze regime
changes in the Japanese economy inthe 1990s using Markov switching VAR (MSVAR). The mainadvantages of
our method to the previous studies are that we need fewer restrictions on the time-evolution of coef cients and less
prior knowledge of structural changes. Kimura et al. (2003) assume the randomwalk prior (the Minnesota prior)
on the time-evolution of coef cients, which are based on linear Gaussian state space modeling. We, however, adopt
the Markov chain prior, which assumes that the time-evolutions of coef cients follow Markov chain processes.
Our assumption is less restricted rather the random walk prior. Fujiwara (2006) and Inoue and Okimoto (2007),
use prior knowledge of the number of structural changes in the Japanese economy. In our method, the structural
changes of coef cients of the economy are detected using the estimated time-varying coef cients of our model.
Thus, we do not need prior knowledge of the structural changes of coef cients and regime changes in the Japanese
economy. Moreover, anadvantage of ourapproachto the MSVAR approachis thatone canuse awhole datasetto
estimate TVSVAR, evenif there are several structural changes.

The major  ndings of this paper are summarized as follows. (i) The Bank of Japan’s conduct of monetary
policy by changing interest rates worked well to control real GDP in the 1980s. However, it has not worked to
control real GDP since the 1990s. Furthermore, lower interest rates brought lower economic growth. (ii) The
interest rate has had almost no impact on the in ation rate since 1990 even though interest rate policy worked
to control in ation in the 1980s. (iii) Policy reaction of the interest rate to the in ation rate was strong in the
early 1980s. However, interest rate reaction to the in ation rate diminished dramatically after 1997. In particular,

4Canova(2007) and Dejong and Dave (2007) are introductory textbooks onthe Bayesianstatistical approachformacroeco-
nomic analysis. Fernandez-Villaverde and Rubio-Ramirez (2005) and Fernandez-Villaverde and Rubio-Ramirez (2007) have
shown that the Monte Carlo particle  lter and maximizing likelihood can be successfully applied to estimate DSGE models.

5The random walk prior is equivalent to the  rst-order of the smoothness prior, proposed by Kitagawa (1983). TVSVAR
based on the Kalman  lter is adopted in Jiang and Kitagawa (1993) and Yano (2004) to estimate reduced-form time-varying-
coef cient vector autoregressions.

6Miyao (2006) is a comprehensive survey of the Japanese macroeconomic and monetary policy based on structural VARs.
Kasuya and Tanemura (2000) constructs Bayesian VAR optimized by the Posterior Information Criterion and estimates the
performance of forecasting.
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introductionof the zero interestrate policy bounded by zero meantthe central bank of Japancould notset interest
rates innegative territory. (iv) Whetherthe long-termrecessionexperienced by Japaninthe 1990s was caused by
aggregate supply factors (Hayashi and Prescott (2002), Hayashi (2003) and Miyao (2006)) or aggregate demand
factors (such papers as Kuttner and Posen (2001) and Kuttner and Posen (2002)) is an oft heard question. This
paperwill show bothsupply and demandfactors contributed to the 10-yearrecession. (v) Fromaggregate demand
estimates, we can  nd spiral effects in the Japanese economy, especially after 1995. Lower real GDP and a lower
in ation rate exacerbated the sluggish economy creating a downward spiral. (vi) From aggregate supply estimates,
the spiral effects are not observed in the sense that lower in ation did not cause much of a further decline in the
in ation rate.

This paper is organized as follows. In section 2, we describe time-varying structural autoregressions and the
outline of anew TVSVAR estimationmethod, proposed by Yano (2008). Insection3, we give empirical analyses
of Japanese monetary policy and the Japanese economy. Insection4, we give conclusions and some discussion.

2 Time-Varying Structural Vector Autoregressions
Inthissection, wegiveanoutline of Yano (2008). First, wedescribe time-varying structural vectorautoregressions
and de ne state vectors to estimate them. Second, we explain the Monte Carlo particle  lter and a self-organizing
state space model to estimate anon-linearnon-Gaussianstate space model.

2.1 Time-Varying Structural Vector Autoregressions
Time-varying structural vector autoregressions (TVSVAR) for the time series Y1:T = f Y1; Y2;    ; YT g are de-
 ned as follows:

B 0;tYt =
PX

p= 1
B p;tYt p + D tut  + ct +  t; (1)

where Yt is a(k  1) vectorof observations attime t, ut  is an(n  1) vectorof exogenous variables attime t,
  0 is aconstant, ct is a(k  1) vectorof time-varying intercepts at time t, and the errorvectorwithstochastic
volatility,  t =

 
 1;t;    ;  k;t

 T  N(0; Vt) withVt = diag( 2
1;t;  2

2;t;    ;  2
k;t) 7 . Thematricesof timevarying

coef cients are:

B 0;t =

2
66664

1 0    0
 b2;1;0;t 1    0

... ... ... ...
 bk;1;0;t     bk;k 1;0;t 1

3
77775

; (2)

B p;t =

2
664

b1;1;p;t    b1;k;p;t
... ... ...

bk;1;p;t    bk;k;p;t

3
775 ; (3)

and

D t =

2
664

d1;1;t    d1;n;t
... ... ...

dk;1;t    dk;n;t

3
775 : (4)

Our TVSVAR is a generalization of TVSVAR, proposed by Primiceri (2005), because we add the exogenous
vector, ut  . We would like to stress that Eq. (1) is a general formulation of time-varying-coef cient regres-
sion/autoregression modeling. Jiang and Kitagawa (1993) pointed out that Eq. (1) can be estimated by each

7Inthis paper, abold-faced symbol means avectororamatrix.
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componentof Yt because V is a diagonal matrix. For example, Y1;t, the  rst component of Yt inEq. (1), canbe
writtenby

Y1;t = b1;1;1;tY1;t 1 + b1;2;1;tY2;t 1    + b1;k;1;tYk;t 1+
   + b1;1;p;tY1;t 1 + b1;2;p;tY2;t 1    + b1;k;p;tYk;t 1 + c1;t +  1;t;

(5)

where c1;t is the  rst component of ct, and  1;t is the  rst component of  t. Foranotherexample, Y2;t, the second
componentof Yt inEq. (1), canbe writtenby

Y2;t = b2;1;0;tY1;t + b2;1;1;tY1;t 1 + b2;2;1;tY2;t 1    + b2;k;1;tYk;t 1+
   + b2;1;p;tY1;t 1 + b2;2;p;tY2;t 1    + b2;k;p;tYk;t 1 + c2;t +  2;t;

(6)

where c2;t is the second componentof ct, and  2;t is the second componentof  t. For the  rst example, we de ne
astate vectorxt of time varying coef cients as follows:

xt =
h
b1;1;1;t; b1;2;1;t;    ; b1;k;1;t;    ; b1;1;p;t; b1;2;p;t;    b1;k;p;t; c1;t

i T
: (7)

For the second example, we de ne another state vector xt of time varying coef cients as follows:

xt =
h
b2;1;0;t; b2;1;1;t; b2;2;1;t;    ; b2;k;1;t;    ; b2;1;p;t; b2;2;p;t;    b2;k;p;t; c2;t

i T
: (8)

Note that in the two examples above, we ignore the exogenous vector, ut  . Generalized formulations are de-
scribed in Appendix D. In time-varying-coef cient regression/autoregression modeling, the main problem is how
to estimate the state vectorxt

8. In the framework of sequential Bayesian  ltering, the  ltering distribution of xt,
whichis based onthe observationvector, Y1:t, is givenby

p(xtjY1:t): (9)

The smoothing distributionof xt, whichis based onthe observationvector, Y1:T , is givenby

p(xtjY1:T ): (10)

Moreover, we assume thatthe time evolutionof xt is givenby

p(xtjxt 1): (11)

Wereferto thisassumptionastheMarkovchainprior on time-varying coef cients. Our prior is based on nonlinear
non-Gaussianstatespacemodeling. ThelinearGaussiancaseof theMarkovchainpriorisequivalentto therandom
walkprior, whichhas oftenbeenadopted inprevious studies. We would like to emphasize thatourMarkov chain
priorovercame the restrictionof the randomwalk prior. Our problemis how to estimate the state vectorxt using
Eq. (9), (10), and (11). To solve the problem, we adopt the Monte Carlo particle  lter, which is an algorithm
to estimate the state vector of a nonlinear non-Gaussian state space model. In the next subsection, we describe a
method to estimate the state vectorxt using the  lter.

2.2 Nonlinear Non-Gaussian State Space Modeling and Self-Organizing State Space
Model

To estimate astate vectorxt, we adopt the Monte Carlo particle  lter (MCPF), proposed by Kitagawa (1996), and
Gordonetal. (1993) andaself-organizing state space model, proposedby Kitagawa(1998). Inthis subsection, we
describe anonlinear non-Gaussianstate space model and aself-organizing state space model (MCPFis described
inthe nextsubsection).

8See Kitagawaand Gersch(1996).
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A nonlinearnon-Gaussianstate space model for the time series Yt; t = f 1; 2;    ; Tg is de ned as follows:

xt = f (xt 1 + vt);
Yt = ht(xt +  t);

(12)

where xt is an unknown nx  1 state vector, vt is nv  1 system noise vector with a density function q(vj ) 9,
and  t is n  1 observation noise vector with a density function r( j ). The function f : R nx  R nv ! R nx

is a possibly nonlinear function and the function ht : R nx  R n ! R ny is a possibly nonlinear time-varying
function. The  rst equation of (12) is called a system equation and the second equation an observation equation. A
systemequationdependsonapossibly unknownns  1 parametervector,  s, andanobservationequationdepends
ona possibly unknownno  1 parametervector,  o. This nonlinear non-Gaussian state space model speci es the
two following conditional density functions.

p(xtjx t 1;  s);
p(Ytjx t;  o):

(13)

Note thatp(xtjxt 1;  s) is equivalent to Eq. (11). We de ne a parameter vector  as follows:

 =
"

 s

 o

#
: (14)

Wedenote that j is the j thelementof  andJ(= ns + no) is thenumberof elementsof  . Thistypeof statespace
model (12) containsabroadclassof linear, nonlinear, Gaussian, ornon-Gaussiantimeseriesmodels. Instatespace
modeling, estimating statevector, xt, isthemostimportantproblem. ForthelinearGaussianstatespacemodel, the
Kalman  lter, which is proposed by Kalman (1960), is the most popular algorithm to estimate state vector, xt. For
nonlinear or non-Gaussian state space models, there are many algorithms. For example, the extended Kalman  lter
(Jazwinski (1970)) is the most popular algorithm and the other examples are the Gaussian-sum  lter (Alspach and
Sorenson (1972)), the dynamic generalized model (West et al. (1985)), and the non-Gaussian  lter and smoother
(Kitagawa (1987)). In recent years, MCPF for nonlinear non-Gaussian state space models is a popular algorithm
because it is easily applicable to various time series models 10.

In econometric analysis, generally, we do not know the parameter vector  . In the TVSVAR framework, the
unknown parameter vectors are  o and  s. In traditional parameter estimation, maximizing the log-likelihood
function of  is often used. The log-likelihood of  in MCPF is proposed by Kitagawa (1996). However, MCPF
is problematic to estimate parameter vector  because of the likelihood of the  lter containing errors from the
Monte Carlo method. Thus, one cannot use a nonlinear optimizing algorithmlike Newton's method 11. To solve
the problem, Kitagawa (1998) proposes a self-organizing state space model. In Kitagawa (1998), an augmented
state vector is de ned as follows:

zt =
"

xt

 

#
: (15)

An augmented system equation and an augmented measurement equation are de ned as

zt = F(zt 1; vt;  s);
Yt = Ht(zt;  t;  o);

(16)

where

F(zt 1; vt;  s) =
"

f (xt 1 + vt);
 

#

9The systemnoise vector is independentof paststates and currentstates.
10Many applications are showninDoucetetal. (2001).
11See Yano (2007b).
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and
Ht(zt;  t;  o) = ht(xt +  t):

This nonlinear non-Gaussian state space model is called a self-organizing state space (SOSS) model. This self-
organizing state space model speci es the two following conditional density functions:

p(ztjzt 1);
p(Ytjzt):

(17)

2.3 The Monte Carlo Particle Filter
Most algorithms of sequential Bayesian  ltering are based on Bayes’ theorem (see Arulampalam et al. (2002)),
whichis

P(ztjY1:t) =
P(Ytjzt)P(ztjY1:(t 1) )

P(YtjY1:(t 1) )
; t  1; (18)

where P(ztjY1:t 1) is the priorprobability, P(Ytjzt) is the likelihood, P(ztjY1:t) is the posteriorprobability, and
P(YtjY1:t 1) is the normalizing constant. We denote an initial probability P(z0) = P(z0j; ), where the empty
set ; indicates that we have no observations. In the state estimation problem, determining an initial probability
P(z0), which is called  lter initialization, is important because a proper initial probability improves a posterior
probability. InTVSVAR, aninitial probability is restricted in 1 < xi;0 < 1 , where xi;0 is the ithelementof x0.

InMCPF, the posteriordensity distributionattime t is approximated as

p(ztjY1:t) = 1
P M

m= 1 wm
t

MX

m= 1
wm

t  (zt  zm
t ); (19)

where wm
t is the weight of a particle zm

t , M is the number of particles, and  is Dirac's delta function 12. The
de nition of wm

t is described below. In the standard algorithm of MCPF, particles are resampled with sampling
probabilities proportional to the weights wm

t at every time t. It is necessary to prevent increasing the variance of
weights after few iterations of Eq. (18) 13. Afterresampling, the weights are reset to wm

t = 1=M. Therefore, Eq.
(19) is rewrittenas

p(ztjY1:t) = 1
M

MX

m= 1
 (zt  ẑm

t ) (20)

where ẑm
t are particles afterresampling. Using Eq. (20), the predictorp(ztjY1:(t 1) ) canbe approximated by

p(ztjY1:(t 1) ) =
Z

p(ztjzt 1)p(zt 1jY1:(t 1) )dzt 1

= 1
M

MX

m= 1

Z
p(ztjzt 1) (zt 1  ẑm

t 1)dzt 1

= 1
M

MX

m= 1
p(ztjẑm

t 1)

' 1
M

MX

m= 1
 (zt  zm

t ):

(21)

12The Dirac delta function is de ned as

 (x) = 0; if x 6= 0;
Z 1

1
 (x)dx = 1:

13See Doucetetal. (2000).
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Note thatzm
t is obtained from

zm
t  p(ztjẑm

t 1): (22)

Substituting Eq. (21) into Eq. (18), we obtainthe following equation:

p(ztjY1:t) / p(Ytjzt)p(ztjY1:(t 1) )

/ 1
M p(Ytjzt)

MX

m= 1
 (zt  zm

t )

= 1
M

MX

m= 1
p(Ytjzm

t ) (zt  zm
t ):

(23)

Comparing Eq. (19) and Eq. (23) indicates thataweightwm
t is obtainby

wm
t / p(Ytjzm

t ): (24)

Therefore, aweightwm
t is de ned as

wm
t / p(Ytjzm

t ) = r( t(Yt; zm
t ))

   
@ 
@y

   ; m = f 1;    ; Mg; (25)

where  t is the inverse function of the function ht
14. In our TVSVAR estimation method, the augmented state

vector is estimated using MCPF. Thus, states and parameters are estimated simultaneously without maximizing
the log-likelihoodof Eq. (16) because parametervector inEq. (16) isapproximatedby particlesandisestimated
as the state vector inEq. (15) 15. The algorithmof ourTVSVAR estimationmethod is summarized as follows 16.

Algorithm: Time-Varying Structural VectorAutoregressions Estimation
SOSS[f ẑm

t 1gM
m= 1; yt]

f
FOR m=1,...M
Predict: zm

t  p(ztjẑm
t 1; vm

t )
Weight: wm

t is obtained by Eq. (25)
ENDFOR
Sumof Weights: sw =

P M
m= 1 wi

t
Log-Likelihood: llk = log(sw=M)

FOR m=1,...,M
Normalize: ŵm

t = wm
t

sw
ENDFOR

Resampling: [f ẑm
t ; ŵm

t gM
m= 1] =resample[f zm

t ; ŵm
t gM

m= 1]
RETURN[f ẑm

t ; ŵm
t gM

m= 1, llk]
g
SOSS.MAIN[f xm

0 gM
m= 1; f ygT

t= 1, P ]
f
 0  unif orm(P  r; P + r)
f zm

0 gM
m= 1 = (f xm

0 gM
m= 1; f  m

0 gM
m= 1)

FOR t=1,...,T
soss = SOSS[f ẑm

t 1gM
m= 1; yt]

14See Kitagawa(1996).
15The justi cation of an SOSS model is described in Kitagawa (1998).
16The details of MCPFand SOSS are described inYano (2007b).
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f ẑm
t ; ŵm

t gM
m= 1 = (f ẑm

t ; ŵm
t gM

m= 1 in soss)
ENDFOR
RETURN[f f ẑm

t ; ŵm
t gM

m= 1g
T
t= 1, Y]

g
Withrespect to a self-organizing state space model, however, Hürseler and Künsch (2001) points out a prob-

lem, namely determination of initial distributions of parameters for a self-organizing state space model. The
estimated parameters of aself-organizing state space model comprise asubsetof the initial distributions of param-
eters. We must know the posterior distributions of parameters to estimate parameters adequately. However, the
posteriordistributions of the parameters are generally unknown. Parameterestimationfails if we do notappropri-
ately know their initial distributions. Yano (2007b) proposes a method to seek initial distributions of parameters
for a self-organizing state space model using the simplex Nelder-Mead algorithm to solve the problem. To seek
initial distributions of parameters, we adopt the algorithm, proposed by Yano (2007b). Moreover, we adopt the
smoothing algorithm and  lter initialization method, which is proposed by Yano (2007a).

2.3.1 Functional Forms
In this paper, we use linear non-Gaussian state space models to estimate time-varying coef cients and param-

eters. A linearnon-Gaussianstate is givenby

xt = xt 1 + vt;
Yi;t = H txt +  i;t;

(26)

where Yi;t is an observation, vt  q(vtj t),  i;t  ri ( i;tj i;o),  i;t is the ith component of  t, and  i;o is the ith
component of  o. The details of xt and H t are described in Appendix C. In our Markov chain prior, q(vtj t)
and ri( i;tj i;o) are possibly non-Gaussian distributions. We would like to emphasize that our prior make the
estimation of TVSVAR  exible rather than the random walk prior. In this paper, the innovation term q(vtj t)
is speci ed by t-distributions, and ri ( i;tj i;o) is speci ed by a normal distribution. In general, the components,
f  1;s;  2;s;    ;  L;sg, of  s are different (L is de ned in Appendix C). In this paper, however, to reduce computa-
tional complexity, we assume as follows.

 1;s =  2;s =    =  L;s = j sj (27)

In this paper, the time evolutions of coef cients are given by

xi;t = xi;t 1 + j sj  t(df ); (28)

where df is the degree of freedom of Student's t-distribution. The innovation term of Yi is given by the normal
distribution( i;t  N(0;  2

i;t)). A time-varying standard deviationis givenby

 i;t = j i;t 1 +  i;o tj; (29)

where  t  N(0; 1).

3 Empirical Analyses
Our methods are applied for the estimation of a quarterly model of the Japanese economy. In the model, four
variables are included : a short-term interest rate (the uncollateralized overnight call rate), in ation rate, growth
rate, and nominal effective exchange rate 17. We use data from 1980:Q1 up to 2006:Q3. The transformation of
variables are (1) rate hikes, (2) growth rate of the seasonally-adjusted GDP de ator, (3) growth rate of seasonally-
adjusted real GDP, and (4) the change of the nominal effective exchange rate. Rate hikes are given by the  rst

17Datadetails are described inAppendix A.

7

-110-



difference of the mean of the monthly average of the uncollateralized overnight call rate 18. Growth rates of the
GDP de ator and real output are given by

xt =
h
logXt  logXt 1

i
 100: (30)

The change of the nominal effective exchange rate is givenby

et =  
h
logEt  logEt 1

i
 100; (31)

where Et is the nominal effective exchange rate. Note that et becomes smaller whenthe yenappreciates. InFig.
1, the fourvariables are shown.

1980 1985 1990 1995 2000 2005

Time

Figure 1: Macroeconomic dataof Japan: 1980:Q1-2006:Q4

18See Miyao (2000), Miyao (2002), and Miyao (2006).
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3.1 Full Recursive TVSVAR
We estimate the  rst order of full recursive TVSVAR (FR-TVSVAR(1)) as a benchmark model. FR-TVSVAR(1)
is givenby

it = b1;1;1;tit 1 + b1;2;1;t t 1 + b1;3;1;tyt 1 + b1;4;1;tet 1 + c1;t +  i;t; (32)
 t = b2;1;0;tit + b2;1;1;tit 1 + b2;2;1;t t 1 + b2;3;1;tyt 1 + b2;4;1;tet 1 + c2;t +   ;t; (33)
yt = b3;1;0;tit + b3;2;0;t t + b3;1;1;tit 1 + b3;2;1;t t 1 + b3;3;1;tyt 1 + b3;4;1;tet 1 + c3;t +  y;t; (34)
et = b4;1;0;tit + b4;2;0;t t + b4;3;0;tyt + b4;1;1;tit 1 + b4;2;1;t t 1 + b4;3;1;tyt 1 + b4;4;1;tet 1 + c4;t +  e;t:

(35)

where it is the  rst difference of the short-term interest rate,  t is the in ation rate, yt is the growth rate of real
output, andet is the change of the nominal effective exchangerate 19. Following Miyao (2000), Miyao (2002), and
Miyao (2006), the variables of FR-TVSVAR(1) are ordered fromexogenous variables to endogenous variables.

We estimate TVSVAR based on quarterly data of the Japanese economy from 1980:Q1 to 2006:Q3. Fig. 2,
3, 4, and 5 show Eq. (32), (33), (34), and (35), respectively. In these  gures, the solid line is an estimate of a
time-varying coef cient and the dashed lines are 68% con dence intervals 20. In invariant-coef cient structural
vectorautoregressions (SVAR), impulse response functions (IRFs) are use to analyze the results. InourTVSVAR,
IRFs are calculated inthe same way inSVAR. However, the interpretationof IRFs of TVSVAR are different from
the interpretation of IRFs of SVAR because the coef cients of TVSVAR are time-varying. In Yano and Yoshino
(2008), we show IRFs forreference 21.

We compare TVSVAR with (invariant coef cient) Structural VAR (SVAR) using residual analysis. SVAR(P)
is givenby

B0Yt = B 1Yt 1 + B 2Yt 2 +    + B P Yt P +  t

We estimate SVAR(1) using quarterly data of the Japanese economy from1980:Q1 to 2006:Q3. B 0 of SVAR(1)
is

B 0 =

2
6664

1 0 0 0
0:0490 1 0 0

 0:4947 0:0100 1 0
 0:7272  0:165  0:7892 1

3
7775 : (36)

The standard errorof B 0 is

B SE
0 =

2
6664

1 0 0 0
0:2481 1 0 0
0:2483 0:1910 1 0
0:2548 0:1910 0:1157 1

3
7775 : (37)

Eq. (37) shows thatmostof the standard errors inB0 are largerthanthe elements of B 0. It indicates the estimates
of SVAR (1) are unreliable. InTable 1, we show the root meansquare error of FR-TVSVAR(1) and SVAR(1). It
indicates thatTVSVAR is better thanSVAR.

In Fig 7 and 8, we show a quantile-quantile plot and the autocorrelation of residuals of FR-TVSVR(1), re-
spectively. In Fig 9 and 10, we show a quantile-quantile plot and the autocorrelation of residuals of SVAR(1),

19We set the number of particles, M, to 10000. Moreover, we set the degrees of freedom, df , in Eq. (28) to 10, 20, 30. In
the all cases, we get the same results. Inour paper, we show results whenwe setdf to 10. The other parameters of simulation
are the same in Yano (2007b) and Yano (2007a). All time-varying coef cients are standardized as follows:

bx;y;z ;t = sdexp=sdobs ;

where sdexp is the standard deviation of an explaining variable and sdexp is the standard deviation of an observation (this
standardizationmethodmay notbe best). Eq. (32) is based onthe Henderson-McKibbin-Taylorrule (see Claridaetal. (2000)).

20Con dence interval is calculated using 100 times estimation of a time-varying coef cient.
21Canovaand Gambetti (2006) proposes to use generalized impulse response functions of TVSVAR to solve this problem.
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Figure 2: it = b1;1;1;tit 1 + b1;2;1;t t 1 + b1;3;1;tyt 1 + b1;4;1;tet 1 + c1;t +  1;t

respectively. These results indicate thatTVSVAR is betterthanSVAR.

3.2 Macroeconomic Analysis
In Fig. 2, the results of Eq. (32) are shown. Equation (32) represents the monetary policy reaction of the central
bank of Japan. The call lending rate, which is controlled by the central bank of Japan, is assumed to depend on
the following fourvariables, namely, (i) lagged interestrate whichrepresents the smoothadjustmentof the interest
rate, (ii) in ation rate, (iii) growth rate of real GDP, and (iv) the exchange rate. Target values of the in ation rate,
log of GDP, andtheexchangeratearecapturedinchangesintheconstantterm. Figures2 (1) to 2 (5) showchanges
in the value of the coef cients of Equation (32). Figure 2 (1) shows that the central bank of Japan was conducting
gradual adjustment of the short-term interest rate during 1980 to 1983 when a high in ation rate during the second
oil crisis was the case. However, the central bankhaltedgradual interestrate adjustments during the bubble period
(1984-90), thoughitresumedsuchadjustments from1993, whenthe low(orzero) interestrate policy wasadopted
until recently. During the bubble period, the central bank's call rate control can be seen as abnormal compared
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Table 1: RootMeanSquare Error

RMSE Time-varying SVAR Invariant-coef cient SVAR
 i 0.04303 0.45066
  0.11014 0.52432
 y 0.08479 0.89801
 e 0.08479 4.15124

with other periods. Figure 2 (2) shows changes in the coef cient of the lagged rate of in ation. It was positive
and quite signi cant between 1980 to 1982 when high in ation hit Japan. It indicates that the central bank was
watching the rate of in ation as the major target of monetary policy. However, it turned to a negative value during
the bubble period which suggests the central bank lowered its call lending rate despite a low rate of in ation during
the asset price bubble period. Figure 2 (3) shows the monetary policy reaction to real GDP. When the Japanese
economy was faced with sluggish growth, the call lending rate was raised. Since the in ation rate was the main
target of central bank monetary policy in the early 1980s. Figure 2 (4) shows monetary policy reaction to the
lagged exchange rate. During the early 1980s, despite the yen's appreciation the call lending rate was raised in
order to  ght higher in ation. Figure 2 (5) is the  uctuation of the constant term. In our paper, it suggests the level
of the call lending rate. In the early 1980s, the level of the call lending rate was high. On the other hand, it had
beenloweredduring the bubble periodandearly 1990s. The response of the interestrate by the central bankshows
no majorreactionto any indicatorsince the late 1990s until recently.

In Fig. 3, the results of Eq. (33) are shown. Figure 3 (1) is the reaction of the in ation rate to the current
nominal interest rate. A higher rate of in ation raised the current nominal interest rate in the 1980s and early 1990s.
Figure 3 (2) is the response to the lagged interest rate of in ation. In the early 1980s, tight monetary policy led to
a lower rate of in ation which is described as a negative coef cient of the lagged interest rate. Figure 3 (3) is the
response to the lagged rate of in ation. During the asset bubble period and early 1990s negative coef cients were
the case. This suggests that despite a positive expected rate of in ation, the actual rate of in ation was declining.
Figure 3 (4) is the response of lagged real GDP to the rate of in ation. In the mid-1980s, relatively higher growth
of the economy brought higher in ation. On the other hand, the in uence of real GDP on in ation was quite small.
Figure 3 (5) is the response of the lagged exchange rate to the rate of in ation. In the early 1980s, the rate of
in ation continued to rise despite higher appreciation of the yen due to the second oil crisis. In the mid-1980s,
high appreciation of the yen brought a lower rate of in ation which was one of the causes of the asset price bubble
inJapan.

Figure 4 shows the aggregate demand function. Figure 4 (3) shows the response of the lagged interest rate on
aggregate demand. In1986, a lower interest rate pushed economic growth. However, in the 1990s, lower interest
ratesresultedincontinuationof thesluggisheconomy whichisdenotedby apositivesignof the laggedinterestrate
on real GDP. Figure 4 (4) is the response of lagged in ation on aggregate demand. In 1983-85, the real economy
was growing. However, in the 1990s, the in ation rate turned negative despite a positive low growth rate. The most
recent period shows a strong positive sign since the in ation rate and economic growth have both turned positive.
Figure 4 (5) is the response of lagged real GDP on aggregate demand. Figure 4 (6) is the response of a lagged
exchange rate on aggregate demand. In 1986, despite the appreciation of the yen, real GDP was rising. In 1994,
rapid appreciation of the yen brought slower growth. Figure 5 shows that during the bubble period in ation had
been lowered and at the same time in ation was stable. Higher economic growth brought appreciation of the yen.

In Fig. 5, the results of Eq. (35) are shown. The coef cients of interest rates (namely it and it 1) show
a positive sign for the entire period since appreciation of the yen lowers the interest rate. The coef cients of the
in ation rate (namely  t and t 1) show positive and negative signs for the entire period. Since the rate of in ation,
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the real interest rate is lowered. Thus, output increases and capital  ows in from abroad, making yen appreciate.
The coef cients of the in ation rate (namely and ), and , show positive and negative signs for the entire period.
Since output increases, stock prices are expected to rise. Thus, capital in ows increase and the yen appreciates.

4 Conclusions and Discussions
In this paper we give an empirical analysis of Japanese monetary policy using time-varying structural vector
autoregressions (TVSVAR) based on the Monte Carlo particle  lter and a self-organizing state space model. We
estimated the time-varying reaction function of Japanese monetary policy, and our TVSVAR also included an
aggregate supply function, anaggregate demandfunction, andnominal exchange rate determinationfunction. Our
TVSVAR is a dynamic full recursive structural VAR, similar to Primiceri (2005), Canova and Gambetti (2006),
and many related papers. We would like to stress that Eq. (1) is a general formulation of time-varying-coef cient
regression/autoregression modeling. While most previous studies are based on the Markov chain Monte Carlo
method and the Kalman  lter, we adopt a new TVSVAR estimation method, proposed by Yano (2008). The
method is based on the Monte Carlo particle  lter, proposed by Kitagawa (1996) and Gordon et al. (1993), and a
self-organizing state space model, proposed by Kitagawa (1998), Yano (2007b), and Yano (2007a). In this paper
we assume that the time evolution of coef cients is given by Markov chain processes. We call this assumption the
Markov chainprior. The Markov chainprioris the generalizationof the randomwalkprior. Thus, the mainfeature
of ourmethod is fewerrestrictions thanprevious methods. Ourmethod is applied forthe estimationof aquarterly
model of the Japanese economy (a nominal short-term interest rate, in ation rate, growth rate of real output, and
change of the nominal effective exchange rate). We detect structural changes in most coef cients of TVSVAR.

The effectiveness of monetary policy using interest rates canbe seen inaggregate supply from1990. Interest
rate policy toward aggregate demand is even worse in the sense that lower interest rate reduced output further.
This paper concludes that Japan's sluggisheconomy was caused notonly by aggregate supply factors but also by
aggregate demand factors. The ineffectiveness of monetary policy from 1990 meant that the Japanese economy
could notrecoveruntil recently.

For our future study, we would like to try the higher order of TVSVAR, estimating the time-varying coef cients
of exogenousvariables, andvarioustypesof TVSVAR. Moreover, wewouldliketo trytime-varyingstructural VAR
withsignrestrictions (TVSVAR-SR). TVSVAR-SR is adynamic versionof Uhlig (2005) 22.

Appendix A Data Source
We use quarterly macroeconomic dataof the Japanese economy from1980:Q1 to 2006:Q3.

 Uncollateralizedovernightcall rate, averagedoverthreemonths(Bankof Japan): uncollateralizedovernight
call rate, monthly average (July 1985-September2006) andcollateralizedovernightcall rate, monthly aver-
age (January 1980 - July 1985) are linked atJuly 1985.
http://www.boj.or.jp/en/theme/research/stat/market/index.htm

 Seasonally-adjusted real/nominal GDP (Cabinet Of ce): quarterly estimates of GDP, chained, (1994:Q1-
2006:Q3) and quarterly estimates of GDP,  xed-based, (1980:Q1-1994:Q1) are linked at 1994:Q1.
http://www.esri.cao.go.jp/en/sna/menu.html

 Seasonally-adjusted GDP de ator (Cabinet Of ce): the de ator is calculated from seasonally-adjusted
real/nominal GDP.
http://www.esri.cao.go.jp/en/sna/menu.html

 Nominal effective exchange rate (Bank of Japan):
http://www.boj.or.jp/en/theme/research/stat/market/forex/index.htm

22Braunand Shioji (2006) and Kamadaand Sugo (2006) analyze the Japanese economy using sign-restricted VAR.
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Appendix B Sensitivity Analysis
Forsensitivity analysis, we estimate TVSVAR (1) withadifferentorderof variables: anominal interestrates, real
growth rate, in ation rate, and nominal effective exchange rate. The results are shown in Fig. 11, 12, 13, and 14.
Interestingly, Fig. 3 (2) and Fig. 13 (3) are nearly identical. Both  gures indicate that BOJ’s conduct of monetary
policy by changing interest rates worked well to control the in ation rate. However, it has not worked to control
the in ation rate since the 1990s. Moreover, Fig. 4 (3) and Fig. 12 (2) are nearly identical, too. It also shows
monetary policy of BOJworked well to control real GDPinthe 1980s. However, ithas notworked to control real
GDPsince the 1990s.

13

-116-



(1) b2,1,0,t   (it)

Time

1980 1985 1990 1995 2000 2005

(2) b2,1,1,t   (it- 1)

Time

1980 1985 1990 1995 2000 2005

(3) b2,2,1,t   (pt- 1)

Time

1980 1985 1990 1995 2000 2005

(4) b2,3,1,t   (yt- 1)

Time

1980 1985 1990 1995 2000 2005

(5)b2,4,1,t   (et- 1)

Time

1980 1985 1990 1995 2000 2005

(6)c2,t

Time

1980 1985 1990 1995 2000 2005
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Figure 6: Stochastic Volatility (Full Recursive TVSVAR)
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Figure 7: Q-Q Plot (Full Recursive TVSVAR)
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Figure 8: Autocorrelationwith95% Con dence Interval (Full Recursive TVSVAR)
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Figure 9: Q-Q Plot (Full Recursive SVAR)
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Figure 10: Autocorrelationwith95% Con dence Interval (Full Recursive SVAR)
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Figure 11: it = b1;1;1;tit 1 + b1;2;1;tyt 1 + b1;3;1;t t 1 + b1;4;1;tet 1 + c1;t +  1;t

Appendix C Full Recursive TVSVAR (from 1980:Q1 to 1998:Q4)
We estimate TVSVAR based on quarterly data of the Japanese economy from 1980:Q1 to 1998:Q4 to avoid the
zero-interest rate policy and quantitative easing policy periods. Fig. 15, 16, 17, and 18 show Eq. (32), (33), (34),
and (35), respectively. In these  gures, the solid line is an estimate of a time-varying coef cient and the dashed
lines are 68% con dence intervals 23. These  gures are nearly identical to the  gures in section 3. We conclude
that it is very little to avoid the zero-interestrate policy and quantitative easing policy periods.

In Fig 19 and 20, we show a quantile-quantile plot and the autocorrelation of residuals of FR-TVSVR(1),
respectively.

23Con dence interval is calculated using 100 times estimation of a time-varying coef cient.
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Figure 13:  t = b3;1;0;tit + b3;2;0;tyt + b3;1;1;tit 1 + b3;2;1;tyt 1 + b3;3;1;t t 1 + b3;4;1;tet 1 + c3;t +  3;t
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Figure 14: et = b4;1;0;tit + b4;2;0;tyt + b4;3;0;t t + b4;1;1;tit 1 + b4;2;1;tyt 1 + b4;3;1;t t 1 + b4;4;1;tet 1 +
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Figure 15: it = b1;1;1;tit 1 + b1;2;1;t t 1 + b1;3;1;tyt 1 + b1;4;1;tet 1 + c1;t +  1;t
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Figure 17: yt = b3;1;0;tit + b3;2;0;t t + b3;1;1;tit 1 + b3;2;1;t t 1 + b3;3;1;tyt 1 + b3;4;1;tet 1 + c3;t +  3;t
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Figure 18: et = b4;1;0;tit + b4;2;0;t t + b4;3;0;tyt + b4;1;1;tit 1 + b4;2;1;t t 1 + b4;3;1;tyt 1 + b4;4;1;tet 1 +
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Figure 19: Q-Q Plot (Full Recursive TVSVAR)

We estimate the  rst order of SVAR (SVAR(1)) using quarterly data of the Japanese economy from 1980:Q1
to 1998:Q4 to avoid the zero-interestrate policy and quantitative easing policy periods. B0 of SVAR(1) is

B 0 =

2
6664

1 0 0 0
0:0648 1 0 0

 0:5243 0:0319 1 0
 0:6978 0:1627  0:8602 1

3
7775 : (C1)

The standard errorof B 0 is

B SE
0 =

2
6664

1 0 0 0
0:2515 1 0 0
0:2519 0:2241 1 0
0:2604 0:2242 0:1259 1

3
7775 : (C2)

Eq. (C2) showsthatmostof the standarderrors inB0 are largerthanthe elementsof B 0. It indicates the estimates
of SVAR (1) are unreliable. In Table 2, we show the root mean square error of FR-TVSVAR(1) and SVAR(1).
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Figure 20: Autocorrelationwith95% Con dence Intervals (Full Recursive TVSVAR)

In Fig 21 and 22, we show a quantile-quantile plot and the autocorrelation of residuals of the  rst order of full
recursive structural vectorautoregressions, respectively.
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Table 2: RootMeanSquare Error

RMSE Time-varying SVAR Invariant-coef cient SVAR
 i 0.01950 0.44802
  0.10686 0.50403
 y 0.04861 0.89696
 e 0.24998 4.15722
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Figure 21: Q-Q Plot (Full Recursive SVAR)

Appendix D Non-Gaussian State Space Model
The time-varying coef cients bi;j ;l;t and di;n;t are estimated by using MCPF. The non-Gaussianstate space repre-
sentationis givenby

xt = F xt 1 + Gvt;
yi;t = H txt +  i;t;

i = 1; 2;    ; k;
(D3)

where F , G, H t are (L  L), (L  L), and (1 L) matrices, respectively. x t is an(L  1) vector of coef cients,
vt is anL variate possibly non-Gaussiannoise,  i;t is apossibly non-Gaussiannoise, and yi;t anobservation. The
symbol L is kp + n + i  1. Details of these vectors and matrices are explained in the following paragraphs. In
ouralgorithm, matrices F , G are speci ed as follows.

F = IL; G = IL; (D4)
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Figure 22: Autocorrelationwith95% Con dence Interval (Full Recursive SVAR)

where IL is anL-dimensional identity matrix.
Forthe convenience of the expression, we use the following notations:

b̂i;0;t =
 
bi;1;0;t;    ; bi;i 1;0;t

 
;

b̂i;t =
 
bi;1;1;t; bi;2;1;t;    ; bi;k;1;t;
bi;1;2;t;    ; bi;k;2;t;    ; bi;1;p;t;    ; bi;k;p;t

 
;

d̂i;t =
 
di;1;t; di;2;t;    ; di;n;t

 
;

r̂i;t =
 
y1;t; y2;t;    ; yi 1;t

 
;

ĥt =
 
y1;t; y2;t 1;    ; yk;t 1;    ;

y1;t p; y2;t p;    ; yk;t p
 
;

f̂ t =
 
u1;t  ; u2;t  ;    ; un;t  

 
:

(D5)
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Vectors xt and H t are de ned as follows. For the  rst component of yt, i = 1,

xt =
 
b̂1;t; d̂1;t

 T ;
Ht =

 
ĥt; f̂ t

 
:

(D6)

Forthe ithcomponentof y(t), 1 < i  k,

x t =
 
b̂i;0;t; b̂i;t; d̂i;t

 T ;
H t =

 
r̂i;t; ĥt; f̂ t

 
:

(D7)
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