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Abstract

Recent years, the Japanese monetary policy is one of the hot topics on the Japan economy. This paper
presents the empirical analysis on Japanese monetary policy based on Time-Varying Structural Vector AutoRegres-
sions (TVSVAR). Our TVSVAR includes a monetary reaction function, an aggregate supply function, an aggregate
demand function, and real exchange rate determination function. Our TVSVAR is a dynamic full recursive struc-
tural VAR, which is similar to Primiceri (2005), Canova and Gambetti (2006), and many related papers. The most
of previous studies on TVSVAR are based on Markov Chain Monte Carlo method and the Kalman filter. We, how-
ever, adopt a new TVSVAR estimation method that is based on the Monte Carlo Particle filter and a self-organizing
state space model, proposed by Kitagawa (1996), Gordon et al. (1993), Kitagawa (1998), Yano (2007b), and Yano
(2007a). The method is proposed by Yano (2007c). Our methods are applied for the estimation of a quarterly
model of the Japanese economy (a nominal short term interest rate, the rate of inflation, the growth rate of real
output, and the real effective exchange rate). We would like to emphasize that our paper is the first one to analyze
the Japanese economy using TVSVAR. It is often asked the causes of long term recession of the Japanese economy
in 1990s whether it is caused by aggregate supply factor or aggregate demand factor. This paper concludes that

both supply and demand factors contribute to the 10-years recession.
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1 Introduction

Recent years, Japanese monetary policy is one of the hot topics on the Japanese economy. This paper presents
the empirical analysis on Japanese monetary policy using Time-Varying Structural Vector AutoRegressions (TVS-
VAR). Our TVSVAR includes a monetary reaction function, an aggregate supply function, an aggregate demand
function, and real exchange rate determination function. The changes of coefficients indicate the changes of the
correlations of macroeconomic variables. Thus, we are able to analyze the changes of the Japanese economy.
Our approach is related to Uhlig (1997), Cogley and Sargent (2001), Ciccarelli and Rebucci (2003), Cogley and
Sargent (2005), Primiceri (2005), Sims and Zha (2006), Canova and Gambetti (2006), and many studies. The most
of previous studies are based on Markov Chain Monte Carlo method and the Kalmén filténe studies, the

random walk priors (the Minnesota priors), which are based on linear Gaussian state space modeling, are assumed
on the time-evolutions of coefficients. The priors are proposed by Doan et al. (1984ho (2007c), however,
proposes a new TVSVAR estimation method that is based on the Monte Carlo Particle filter and a self-organizing
state space model, proposed by Kitagawa (1996), Gordon et al. (1993), Kitagawa (1998), Yano (2007b), and Yano
(2007a). A novel feature of Yano (2007c) is that it assumes the time evolutions of coefficients are given by Markov
chain processes. We call this assumpfiterkov chain priorson time-varying coefficients. Our priors are based

on the nonlinear non-Gaussian state space modeling. The linear Gaussian cases of the Markov chain priors are
equivalent to the random walk priors. Thus, our method is more flexible rather than previous methods. Our method
is applied for the estimation of a quarterly model of the Japanese economy (a nominal short term interest rate, in-
flation rate, real growth rate, and the return of the real effective exchange rate). We detect structural changes in
most coefficients of TVSVAR.

There exist previous studies on the Japanese monetary policy based on Bayesian statistical approach: Kimura
et al. (2003), Fujiwara (2006), and Inoue and Okimoto (2007Kimura et al. (2003) estimates time-varying
reduced-form VAR models based on the Kalman filter. Fujiwara (2006) and Inoue and Okimoto (2007) analyze the
regime changes of the Japanese economy in 1990s using Markov Switching VAR (MSVAR). The main advantages
of our method to the previous studies are the we need less restrictions on the time-evolution of coefficients and less
prior knowledge on structural changes. Kimura et al. (2003) assume random walk priors (the Minnesota priors) on
the time-evolution of coefficients, which are based on linear Gaussian state space modeling. We, however, adopt
Markov chain priors which assume the the time-evolutions of coefficients follow Markov chain processes. Our
assumption is less restricted rather than random walk priors. Fujiwara (2006) and Inoue and Okimoto (2007),
use prior knowledge on the number of structural changes of the Japanese economy. In our method, the structural
changes of coefficients of the economy are detected using the estimated time-varying coefficients of our model.
Thus, we don't need prior knowledge on the structural changes of coefficients and the regime changes of the

4Canova (2007) and Dejong and Dave (2007) are introductory textbooks on Bayesian statistical approach for macroeco-
nomic analysis. Fernandez-Villaverde and Rubio-Ramirez (2005) and Fernandez-Villaverde and Rubio-Ramirez (2007) have
shown that the Monte Carlo particle filter and Metropolis-Hastings algorithm can be successfully applied to estimate DSGE
models.

5The random walk priors are equivalent to first-order smoothness priors, proposed by Kitagawa (1983). TVSVAR based on
the Kalman filter is adopted in Jiang and Kitagawa (1993) and Yano (2004) to estimate reduced-form time-varying coefficients
vector autoregressions.

®Miyao (2006) is a comprehensive survey on the Japanese macroeconomic and monetary policy based on structural VARS.
Kasuya and Tanemura (2000) constructs Bayesian VAR optimized by the Posterior Information Criterion and estimates the
performance of forecasting.



Japanese economy. Moreover, an advantage of our approach to the MSVAR approach is that it is not necessary for
us to divide our date set into multi-pieces, even if several structural changes happen in the data. In the MSVAR
approach, for example, if a structural change happens in your data set, you need to divide the data into two pieces
to estimate each VAR for each piece. In general, the size of macroeconomic data is relatively small. Thus, this
problem may cause poor estimation if several structural changes happen in your data set. In our approach, however,
this problem doesn’t happen. You are able to use your whole data set to estimate TVSVAR, even if several structural
changes happen in it.

Major findings of this paper are summarized as follows. (i) Monetary policy by changing the interest rate
worked well to control real GDP in 1980s. However, it did not work to control real GDP since 1990s. Furthermore
lower interest rate brought lower economic growth. (ii) The rate of interest show almost no impact on rate of
inflation after 1990 even though interest rate policy worked to control inflation in 1980s. (iii) Policy reaction
of the interest rate to rate of inflation was strong in early 1980s. However the interest rate reaction to rate of
inflation diminished drastically after 1997. Especially introduction of zero interest rate policy bounded by zero
and the central bank of Japan could not set its interest rate into negative value. (iv) It is often asked the causes of
long term recession of the Japanese economy in 1990s whether it is caused by aggregate supply factor (Hayashi
and Prescott (2002), Hayashi (2003) and Miyao (2006)) or aggregate demand factor (such papers as Kuttner and
Posen (2001) and Kuttner and Posen (2002)). This paper will show both supply and demand factors contributed
to the 10-years recession. (v) From estimate of aggregate demand, there can be found spiral effects in Japanese
economy especially after 1995. Lower real GDP and lower rate of inflation accelerated sluggish economy and
created downward spiral. (vi) From estimate of aggregate supply, the spiral effects are not observed in a sense that
lower inflation did not cause much further decline in rate of inflation.

This paper is organized as follows. In section 2, we describe Time-Varying Structural Autoregressions and
the outline of a new TVSVAR estimation method, proposed by Yano (2007c). In section 3, we show empirical
analyses on the Japanese monetary policy and the Japanese economy. In section 4, we describe conclusions and

discussions.

2 Time-Varying Structural Vector Autoregressions

In this section, we describe the outline of Yano (2007c). First, we describe Time-Varying Structural Vector Au-
toregressions and define state vectors to estimate it. Second, we explain the Monte Carlo patrticle filter and a
self-organizing state space model to estimate a nonlinear non-Gaussian state space model.

2.1 Time-Varying Structural Vector Autoregressions

Time-Varying Structural Vector Autoregressions (TVSVAR) for the time seYigs = {Y1,Y>,---,Yr} is de-

fined as follows.
P

By;Y; = Z B,.Y; ,+ Dius_ +ci + €, (1)

p=1
whereY; is a(k x 1) vector of observations at tintewu;_,; is an(n x 1) vector of disturbances at timex > 1 is
a constante; is a(k x 1) vector of time-varying intercepts at timeande; = (elyt, e ,ek,t)T ~ N(0,V) with



V =diag(o?,0%, - ,02) 7. The matrices of time varying coefficients are
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Jiang and Kitagawa (1993) pointed out that Eq. (1) can be estimated by the each compdndreaHusd/ is a
diagonal matrix. For examplé; ;,the first component o in Eqg. (1), can be written by

Yipg=b11,14Y16-1+b1214Y24—1 -+ b1 k1Y -1+ )
et b p e Y16—1 b1 p Yo i1 01k pt Ye—1 + CLe T €1t
wherec; . is the first component af,, ande; . is the first component af,. For another examplé} ;, the second
component ofY; in Eq. (1), can be written by

Yo =bo1,0Y1,6 +b21,1, Y101 +b2214Y2 -1+ b2 1,4k -1+ )
oot bo 1 ptY1e—1 b2 p Yo 1 T b2k p Y -1+ Cop €2,

wherecs ¢ is the second component of, ande, , is the second component ef. For the first example, we define
a state vectos, of time varying coefficients as follows.
T
Ty = [b1,1,1,t, bi2,6 01k 011,85 01,28 DLkt Cl,t} . 7

For the second example, we define another state vegtoftime varying coefficients as follows.

T
Ty = [bQ,l,O,ty 52,1,1,15, b2,2,1,t> te abQ,k,l,ta T 7b2,1,p,t) b2,2,p,ta T b2,k,p,t7 CQ,t} . (8)

According to the discussion which is described above, the main problem of TVSVAR is how to estimate the state
vectorz;. In the framework of sequential Bayesian filtering, the filtering distributiomofwhich is based on the
observationsy ., is given by

P(fﬂt|Y1:t)- )

The smoothing distribution a;, which is based on the observatiod§,r, is given by

p(@d] Yier). (10)

"In this paper, a bold-faced symbol means a vector or a matrix.



Moreover, we assume that the time evolutioncefs given by

p(xi]Ti1)- (11)

We refer to this assumption &darkov Chain priorson time-varying coefficients. Our priors are based on the
nonlinear non-Gaussian state space modeling. The linear Gaussian cases of the Markov chain priors are equivalent
torandom walk priorswhich are often adopted in previous studies. We would like to emphasize our Markov chain
priors overcome the restriction of random walk priors. Our problem is how to estimate the statenecsing

Eqg. (9), (10), and (11). To solve the problem, we adopt the Monte Carlo patrticle filter. In the next subsection, we

describe a method to estimate the state veetarsing the filter.

2.2 Nonlinear Non-Gaussian State Space Modeling and A Self-Organizing State Space
Model

To estimate a state vectsg, we adopt the Monte Carlo Particle Filter (MCPF), proposed by Kitagawa (1996) and
Gordon et al. (1993) and a self-organizing state space model, proposed by Kitagawa (1998). In this subsection, we
describe a nonlinear non-Gaussian state space model and a self-organizing state space model (MCPF is described
in the next subsection).

A nonlinear non-Gaussian state space model for the time SgEries= {1,2,--- ,T} is defined as follows.

= f(xi—1) + 4,
Y; = hi(xs) + €,

(12)

wherez; is an unknowm,, x 1 state vectory; isn, x 1 system noise vector with a density functigv|-) &, €; is

n. x 1 observation noise vector with a density functidi|-). The functionf : R"= x R"> — R"= is a possibly
nonlinear function and the function : R"= x R" — R™v is a possibly nonlinear time-varying function. The

first equation of (12) is called a system equation and the second equation of (12) is called an observation equation.
A system equation depends on a possibly unknewynk 1 parameter vector,, and an observation equation
depends on a possibly unknowry x 1 parameter vecto,. This nonlinear non-Gaussian state space model

specifies the two following conditional density functions.

p(mt|mt—17£6‘)a

(13)
p(Y;f |wt7 50)'
Note thatp(x:|x:—1, &) is equivalent to Eq. (11). We define a parameter ve@tas follows.
0= & . (14)
&o

We denote that; is thejth element ob andJ (= n;+n,) is the number of elements 6f This type of state space

model (12) contains a broad class of linear, nonlinear, Gaussian, or non-Gaussian time series models. In state space
modeling, estimating the state space veatpis the most important problem. For the linear Gaussian state space
model, the Kalman filter, which is proposed by Kalman (1960), is the most popular algorithm to estimate the state
vectorz,. For nonlinear or non-Gaussian state space model, there are many algorithms. For example, the extended
Kalman filter (Jazwinski (1970)) is the most popular algorithm and the other examples are the Gaussian-sum filter

8The system noise vector is independent of past states and current states.
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(Alspach and Sorenson (1972)), the dynamic generalized model (West et al. (1985)), and the non-Gaussian filter
and smoother (Kitagawa (1987)). In recent year, MCPF for nonlinear non-Gaussian state space model is a popular
algorithm because it is easily applicable to various time series médels

In econometric analysis, generally, we don’t know the parameter véctdn the framework of TVSVAR,
the unknown parameter vectors ggeandg,. In traditional parameter estimation, maximizing the log-likelihood
function of@ is often used. The log-likelihood & in MCPF is proposed by Kitagawa (1996). However, MCPF is
problematic to estimate the parameter veé@drecause the likelihood of the filter contains error from the Monte
Carlo method. Thus, you cannot use nonlinear optimizing algorithm like Newton’s métho®@o solve the
problem, Kitagawa (1998) proposes a self-organizing state space model. In Kitagawa (1998), an augmented state
vector is defined as follows.

2= ", (15)
0

An augmented system equation and an augmented measurement equation are defined as

zy = F(zi_1,v1,&s),

K - Ht(zta 6ta£0)7

(16)

where
flxe—1) + vy,

F(zi_1,v,&) = 0

and
Hi(zt,€,80) = he(x) + €.

This nonlinear non-Gaussian state space model is called a self-organizing state space (SOSS) model. This self-
organizing state space model specifies the two following conditional density functions.

p(2e]zi-1),
p(Yi|zt).

17

2.3 The Monte Carlo Particle Filter

Most algorithms of sequential Bayesian filtering are based on Bayes’ theorem (See Arulampalam et al. (2002)),

which is

P(Y; P Y-

( t|Zt) (Zt| 1:(t 1))’ t>1,
]P)(}/Hyvlz(t—l))

]P(Zt |Y1:t) = (18)

whereP(z;|Y7.:—1) is the prior probabilityP(Y;|z:) is the likelihood P(z;|Y7.:) is the posterior probability, and
P(Y;|Y1..—1) is the normalizing constant. We denote an initial probabifitg,) = P(z0|0), where the empty
setf) indicates that we have no observations. In the state estimation problem, determining an initial probability
P(zp), which is called filter initialization, is important because a proper initial probability improves a posterior
probability. In TVSVAR, an initial probability is restricted il < z; o < 1, wherez; o is theith element ofe,.

In MCPF, the posterior density distribution at tichis approximated as

m=1 Wt

M
1
p(zt“/l:t) = M m Z w;n(s(zt - z;fm)v (19)
m=1

®Many applications are shown in Doucet et al. (2001).
105ee Yano (2007b).



wherew!" is the weight of a particle”, M is the number of particles, arids the Dirac’s delta functioh!. The
definition of w;" is described below. In the standard algorithm of MCPF, particles are resampled with sampling
probabilities proportional to the weights™ at every timet. It is necessary to prevent increasing the variance of
weights after few iterations of Eq. (18). After resampling, the weights are resett¥ = 1/M. Therefore, Eq.

(19) is rewritten as

M
Zt | Y1 it Z Am (20)

wherez;™ are particles after resampling. Using Eq. (20), the predietey|Y;.;—1)) can be approximated by

(2| Yi.e—1)) = /p(zt‘zt—l)p(zt—l‘le:(tfl))dzt—l

72/ (zt|ze-1)0(2e—1 — 2" )dze1

(21)
- Z (el 2%1)
1 X m
i Zé(zt—zt ).
m=1
Note thatz;" are obtained from
z" ~ p(z:| 27 ). (22)
Substituting Eq. (21) to Eqg. (18), we obtain the following equation.
p(2e] Y1) oxp(Yelze)p(2| Yi(i-1))
1 M
CXM (thlzt) mzlé(Zt - Z;n) (23)
1 M
MmZ:lp Y;|zm Z _z;n).
Comparing Eg. (19) and Eg. (23) indicates that weigbjtsare obtain by
wi™ o p(Ye|z("). (24)
Therefore, a weighi}” is defined as
wf' o p(Yil=") = r((¥i 2 )| 00| m = {1, M), (25)

where) is the inverse function of the functioly 3. In our TVSVAR estimation method, the augmented state
vector is estimated using MCPF. Thus, states and parameters are estimated simultaneously without maximizing
the log-likelihood of Eq. (16) because the parameter vegtior Eq. (16) is approximated by particles and it is

1The Dirac delta function is defined as

0(x) =0, if z #0,

o(z

(oo}

125ee Doucet et al. (2000).
135ee Kitagawa (1996).



estimated as the state vector in Eq. (35)The algorithm of our TVSVAR estimation method is summarized as

follows *°.
Algorithm: Time-Varying Structural Vector Autoregressions Estimation

soss{z 3wl
{

FOR m=1,...M
Predict: 2z} ~ p(z¢|z{™" 1, vf")
Weight: w;™ is obtained by Eq. (25)
ENDFOR
Sum of Weightssw = S22 wi
Log-Likelihood: ik = log(sw/M)

FORm=1,..,.M
Normalize:wj"* = %
ENDFOR

Resampling: {2/, @7 }_ ] =resample{z;", @} _ ]
RETURN 2", %} M, k]

}
SOSS.MAIN[zz )M (g}l |, P
{
0y ~ um'form(P —r,P+r)
{0 = ({zg )M o)
FORt 1 T

soss = SOSSE™ 1}, _,, vl

{ﬁlnv wi"}m 1= ({zt ; w:n}m 1 n 5053
ENDFOR

RETURN[{{2}", }m e Y

}

On a self-organizing state space model, howevérskler and Kinsch (2001) points out a problem: determi-
nation of initial distributions of parameters for a self-organizing state space model. The estimated parameters of a
self-organizing state space model comprise a subset of the initial distributions of parameters. We must know the
posterior distributions of parameters to estimate parameters adequately. However, the posterior distributions of the
parameters are generally unknown. Parameter estimation fails if we do not know appropriate their initial distribu-
tions. Yano (2007b) proposes a method to seek initial distributions of parameters for a self-organizing state space
model using the simplex Nelder-Mead algorithm to solve the problem. To seek initial distributions of parameters,
we adopt the algorithm, which is proposed by Yano (2007b). Moreover, we adopt the smoothing algorithm and
filter initialization method, which is proposed by Yano (2007a).

1The justification of an SOSS model is described in Kitagawa (1998).
5The details of MCPF and SOSS is described in Yano (2007b).



2.3.1 Functional Forms

In this paper, we use linear non-Gaussian state space models to estimate time-varying coefficients and param-
eters. A linear non-Gaussian state is given by

Tt = Ty—1 + Vg,
(26)
Yi¢ = Hixi + €4,

whereY; , is an observationy; ~ q(v¢|&;), €1 ~ 1i(€it|&i0). €.+ IS theith component ok,, and¢; , is theith
component of,. The details ofe, and H; are described in Appendix C. In our Markov chain priay&y; |€;)
andr;(e;¢|€; ,) are possibly non-Gaussian distributions. We would like to emphasize that our priors make the
estimation of TVSVAR flexible rather than random walk priors. In this paper, the innovationg@rf€,) is
specified by normal distributions édistributions, and; (¢; +|¢; o) is specified by normal distributions. In general,
the components{&; s, &, -+ , &5}, Of € are different (L is defined in appendix C). In this paper, however, to

reduce computational complexity, we assume as follows.
(Al) &Ls=&s=" =& = |&] (27)
(A2) & =0, (28)
In this paper, the time evolutions of coefficients are given by
Tip = Tig—1 + || x t(df), (29)
wheredf is the degree of freedom of Studentslistribution. The innovation term df; is given by the normal
distributions ¢; , ~ N (0, 02)) 8.
3 Empirical Analyses

Our methods are applied for the estimation of a quarterly model of the Japanese economy. In the model, four
variables are included : a short-term interest rate (the uncollateralized overnight call rate), the rate of inflation (the
growth rate of seasonal adjusted GDP deflator), the growth rate of output (the growth rate of seasonal adjusted real
GDP), and the return of the real effective exchange Yatéve use data from 1980:1 up to 2006:11l. Rate hikes are
given by the first difference of the mean of the monthly average of the uncollateralized overnight ¢&ll Tate

growth rates of GDP deflator and real output are given by

Ty = |:10g Xt — 10g Xt_1:| x 100. (31)
The growth rate of the real effective exchange rate is given by
e = — [log E; — log Et—l] x 100, (32)

wherekE; is the real effective exchange rate. Note thabecomes smaller when Yen is appreciated.
In Fig. 1, the four variables are shown.

[Figure 1 about here.]

8primiceri (2005) proposes TVSVAR with Stochastic Volatility. An elements of Time-Varying Variance Covariance Matrix
is given by
(B2) Giym,t = |0i,m,e—1 + nel, (30)
wheren, ~ N(0,¢7,).
"The details of data are described in Appendix A.
185ee Miyao (2000), Miyao (2002), and Miyao (2006).



3.1 Full Recursive TVSVAR

We estimate the first order of full recursive TVSVAR (FR-TVSVAR(1)) as a benchmark model. FR-TVSVAR(1)
is given by

i = b1,1,1,600—1 +b1,2,1,6m—1 + b1,3,1,¢Yi—1 + bra1,e€—1 + C1p + €y (33)
Ty = b2,1,0,¢8¢ + b2,1,1,4%—1 + b2,21+Te—1 +b231,tYt—1 +b2a1t60—1 + C2t + €r g, (34)
Yt = b3,1,0,¢% + b3,2,0,¢7 + 031,191 +03,2,1,¢Me—1 + b33, 1,:Ys—1 + b34,1,¢€t—1 + €3¢ + €y 1, (35)

et = ba,1,0,t0¢ + 0420t + 0130yt +ba1,1,60e—1 +ba2 1M1+ baz1,4Ye—1 +baa1€—1 + Cap + €cy
(36)

wherei, is the first difference of the short-term interest ratejs the rate of inflationy; is the growth rate of

real output, and; is the return of the real effective exchange réteFollowing Miyao (2000), Miyao (2002), and

Miyao (2006), the variables of FR-TVSVAR(1) are ordered from exogenous variables to endogenous VAriables
First, we estimate TVSVAR based on quarterly data of the Japanese economy from 1980:Q1 to 1998:Q4 to

avoid the periods of zero-interest rate policy and quantitative easing policy. Fig. 2, 3, 4, and 5 show Eq. (33),

(34), (35), and (36), respectively. In these figures, the solid line is a estimate of a time-varying coefficient and the

dash-lines aré8% confidence intervai’.

[Figure 2 about here.]
[Figure 3 about here.]
[Figure 4 about here.]
[Figure 5 about here.]
In Fig. 6, 7, 8, and 9, we show Impulse Response Functions (19809356:Q41989:Q411997:Q4), respectively.
[Figure 6 about here.]
[Figure 7 about here.]
[Figure 8 about here.]

[Figure 9 about here.]

%We set the number of particled/, to 10000. Moreover, we set the degrees of freedgmin Eq. (29) to 10, 20, 30. In
the all cases, we get same results. In our paper, we show results thatdfetsd. The other parameters of simulation are
same in Yano (2007b) and Yano (2007a). All time-varying coefficients are standardized as follows:

ba,y,z,t = Sdewp/Sdoba

wheresd.,, is the standard deviation of an explaining variable adgd,, is the standard deviation of an observation (this
standardization method may not be best).

2The results of block recursive TVSVAR, which is a dynamic version of SVAR, proposed by Christiano et al. (1999), are
shown.

2confidence interval is calculated usih@0 times estimation of a time-varying coefficient.



In Fig 10 and 11, we show Quantile-Quantile plot and autocorrelation of residuals of FR-TVSVR(1), respectively.
[Figure 10 about here.]
[Figure 11 about here.]

Second, we estimate TVSVAR based on quarterly data of the Japanese econmy from 1980:Q1 to 2006:Q3. Fig.
12,13, 14, and 15 show Eq. (33), (34), (35), and (36), respectively.

[Figure 12 about here.]
[Figure 13 about here.]
[Figure 14 about here.]
[Figure 15 about here.]

In Fig 16 and 17, we show Quantile-Quantile plot and autocorrelation of residuals of FR-TVSVR(1), respectively.

[Figure 16 about here.]
[Figure 17 about here.]

We compare TVSVAR with (invariant coefficient) Structural VAR (SVAR) using residual analysis. SVAR(P)
is given by
ByY; = B1Y; 1+ ByY; o+ -+ BpY; p+e

First, we estimate the first order of SVAR (SVAR(1)) using quarterly data of the Japanese economy from 1980:Q1
to 1998:0Q4 to avoid the periods of zero-interest rate policy and quantitative easing @&Jiof.SVAR(1) is

1 0 0 0
0.0648 1 0 0

= (37)
—0.5243 0.0319 1 0
—0.6978 0.1627 —0.8602 1

The standard error dB is

1 0 0 0
0.2515 1 0 0

By¥ = (38)
0.2519 0.2241 1 0
0.2604 0.2242 0.1259 1

Eq. (38) shows the most of the standard errorBjnare larger than the elements Bf). In Table 1, we show the
Root Mean Square Error of FR-TVSVAR(1) and SVAR(1).

[Table 1 about here.]

In Fig 18 and 19, we show Quantile-Quantile plot and autocorrelation of residuals of the first order of Full Recur-
sive Structural Vector Autoregressions, respectively.

10



[Figure 18 about here.]
[Figure 19 about here.]

Second, we estimate SVAR(1) using quarterly data of the Japanese economy from 1980:Q1 to 2806:Q3.
of SVAR(1) is

1 0 0 0
0.0490 1 0 0
- (39)
—0.4947 0.0100 1 0
—-0.7272 —-0.165 —-0.7892 1
The standard error dB is
1 0 0 0
0.2481 1 0 0
ByE = (40)
0.2483 0.1910 1 0
0.2548 0.1910 0.1157 1

In Table 2, we show the Root Mean Square Error of FR-TVSVAR(1) and SVAR(1).
[Table 2 about here.]

In Fig 20 and 21, we show Quantile-Quantile plot and autocorrelation of residuals of the first order of Full Recur-
sive Structural Vector Autoregressions, respectively.

[Figure 20 about here.]
[Figure 21 about here.]

In Fig. 2, the results of Eq. (33) are shown. Equation (32) represents the monetary policy reaction of the
Central Bank of Japan. The call lending rate which is controlled by the Central Bank of Japan assumed to depend
on the following four variables, namely, (i) lagged interest rate which represents the smooth adjustment of the
interest rate, (ii) rate of inflation, (iii) the growth rate of real GDP_(;) and (iv) the exchange rate. Target values
of the rate of inflation, log of GDP and the exchange rate are captured in the changes in the constant.term
Page 20 figures (1) to (5) show the changes in the value of coefficients of Equation (32). Figure2 (1) shows that
the central bank of Japan was conducting gradual adjustment of the short term interest rate during 1980 to 1983
when the high rate of inflation in the second oil crisis was observed. However, the Central Bank of Japan stopped
to conduct gradual interest rate policy adjustment during the bubble period (1984 to 1990). The Central bank again
came back to do gradual interest rate adjustment after 1993 to the recent where low (or zero) interest rate policy
was adopted. During the bubble period, the Central bank’s call rate control can be seen as abnormal compared
with other period. Page 20 Figure (2) shows changes in the coefficient of the lagged rate of infiatign [t
was positive and quite significant between 1980 to 1982 when the high rate of inflation hit Japan. It denotes that
the central bank was watching the rate of inflation as the major target of the monetary policy. However, it turns
negative value during the bubble period which suggests the Central Bank of Japan lowered its call lending rate
despite low rate of inflation during the period of asset price bubble. Page 20, Figure (3) shows the monetary policy
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reaction to real GDP. When Japanese economy faced with sluggish growth, the call lending rate was raised. Since
the rate of inflation was the main target of the Central Bank monetary policy in early 1980s. Page 20, Figure (4)
denotes the monetary policy reaction to the lagged exchange rate. During the period of early 1980s, despite the
yen appreciation the call lending rate was raised in order to fight against higher rate of inflation. Page 20, Figure
(5) is the fluctuation of the constant term. In our paper, it suggests the level of the call lending rate. In the period of
early 1980s, the level of the call lending rate was high. On the other hand, it had been lowered during the bubble
period and early 1990s. The response of the interest rate by the Central Bank of Japan shows no major reactions
to any indicators since late 1990s until recent. In Fig. 4, the results of Eq. (35) are shown. Figure 3, (1) is the
reaction of the rate of inflation to current nominal interest rate. Higher rate of Inflation raised current nominal
interest rate in 198s and early 1990s. Figure 3, (2) is the response to the lagged interest rate of rate of inflation. In
earlyd 1980s,00 tight 0 monetaryd policy 0 ledO to O lower O rated of O inflationd whichO is O
described] asO negativell coefficient of lagged interest rate. Figure 3, (3) is the response to the lagged rate of
inflation. During thed asset] bubbled periodd andd earlyd] 1990s0 show[ negativel] coefficients[
It O suggest$] despitel] positive[l expected rate of inflation, actual rate of inflation was declining. Figure 3,
(4) is the response of lagged real GDR_(;) to the rate of inflation. In mid 1980s, relatively higher growth of the
economy brought higher rate of inflation. On the other hand, influence of real GDP to the rate of inflation was quite
small. Figure 3, (5) is the response of lagged exchange ¢ate)(to the rate of inflation. In early 1980s the rate
of inflation went on going despite higher appreciation of the yen due to the effect of the second oil crisis. In mid
1980s, high appreciation of the yen brought lower rate of inflation which was one of the causes of the asset price
bubble in Japan. Figure 4 shows the aggregate demand function. Figure 4 (3) shows the response of the lagged
interest rate on aggregate demand. In 1986, the lower interest rate pushed economic growth. However, in the
1990, lower interest rate kept sluggish economy which is denoted by the positive sign of the lagged interest rate on
real GDP. Figure 4 (4) is the response of lagged inflation on aggregate demand. In 1983-85 period, real economy
was growing. However, in 1990s, rate of inflation turns to negative figures despite positive low growth rate. Most
recent period shows strong positive sign since the rate of inflation and the economic growth turned positive each
other. Figure 4 (5) is the response of lagged real GDP on aggregate demand. Figure 4 (6) is the response of lagged
exchange rate on aggregate demand. In 1986, despite the appreciation of the yen, real GDP was rising. In 1994
high appreciation of the yen brought slower growth. Figure 5 shows that during the bubble period, inflation had
been lowered and at the same time, inflation was stable. Higher economic growth brought appreciation of the yen.
Equation (33) and Figure 3 show the aggregate supply function and their changes in the coefficients. Since
it is assumed Cholesky decomposition, the current interest#atadpears in Equation (33). The coefficient of
it is positive which would be showing the simultaneity of the relation between the rate of inflatipar(d the
nominal rate of interesti{). The coefficient of the lagged interest ratg () is hegative during the bubble period
of 1985-1990 where lower interest rate induce higher demand and higher rate of inflation. The coefficient of the
lagged rate of inflation#; 1) represents the expected rate of inflation. Since 1997, the rate of inflation became
almost zero which shows high correlation with the lagged rate of inflation. The coefficient of lagged real GDP
(y:—1) shows positive during 1980 to 1987. On the other hand, after 1997, the ordinary Phillips Curve relations
can not be observed in Figure 3. (5) in Figure 3 denotes the reaction of the rate of inflation to the exchange rate.
When the exchange rate is appreciated, the export will decline and the rate of inflation will fall. Therefore the
expected sign oé; _; is negative. Lastly the constant term (6) increased all the sudden in year 1997 where the

target values of the rate of inflation and the real growth rate had been dropped.
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In Fig. 4, the results of Eq. (34) are shown. The coefficient &f positive since the real interest rate was rising
despite of the decline in nominal interest rate so that the real output did not rise much. From 2001, the growth rate
of real output became small so that the coefficient also shows almost zero. The coeffigignt sfiows positive
since the real interest rate becomes lower and the real output rises. The coeffigientigfnegative from 1981
to 1995 since the real growth rate became lower and lower. Especially after 1998 the coefficient show almost
zero due to extremely low growth rate. The coefficientof; shows negative sign most of the period since the
appreciation of the yen lowered output growth.

In Fig. 5, the results of Eq. (36) are shown. In Fig. 5, the results of Eq. (35) are shown. The coefficients of
interest rates (namely andi;_1), bs,1 0.+ andby 1 1+, Show positive sign in the entire period since appreciation of
the yen lowers interest rate. The coefficient of inflation rate (namedydm,_1), by 2 0.+ andby 2 1 +, Show positive
and negative signs in the entire period. Since the rate of inflation,the real interest rate is lowered. Thus,output
increases and capital inflow from abroad. It makes Yen appreciated. The coefficient of inflation rate amely
andy:_1), ba 3,0+ andby 3 1+, Show positive and negative signs in the entire period. Since the increases in output,

stock price is expected to rise. Thus, capital inflow increases and the Yen appreciated.

4 Conclusions and Discussions

In this paper, we present empirical analysis on Japanese monetary policy using Time-Varying Structural Vector
Autoregressions based on the Monte Carlo particle filter and a self-organizing state space model. We estimate
the time-varying reaction function of the Japanese monetary policy, and our TVSVAR also includes an aggregate
supply function, an aggregate demand function, and real exchange rate determination function. Our TVSVAR
is a dynamic full recursive structural VAR, which is similar to Primiceri (2005), Canova and Gambetti (2006),
and many related papers. The most of previous studies are based on Markov Chain Monte Carlo method and the
Kalman filter. Our approach, however, is based on the Monte Carlo Particle filter and a self-organizing state space
model, proposed by Kitagawa (1996), Gordon et al. (1993), Kitagawa (1998), Yano (2007b), and Yano (2007a).
The TVSVAR estimation method is proposed by Yano (2007c). In this paper, we assume on the time evolution
of coefficients which is depend on Markov chain. We call this assumpfiarkov chain priors The Markov
chain priors are the generalization of random walk priors. Thus, the main feature of our method is less restrictions
rather than previous methods. Our methods are applied for the estimation of a quarterly model of the Japanese
economy (a nominal short term interest rate, the rate of inflation, the growth rate of real output, and the return of
the real effective exchange rate). We detect structural changes in most coefficients of TVSVAR. In effectiveness of
monetary policy by use of the interest rate can be seen in aggregate supply since 1990. Interest rate policy toward
aggregate demand is even worse in a sense that lower interest rate reduced output further. This paper concludes
the sluggish economy of Japan is caused not only by aggregate supply factor but also by aggregate demand factor.
Ineffectiveness of monetary policy since 1990 could not recover Japanese economy until recent.

For our future study, we would like to try theh order of TVSVAR, estimating time-varying coefficients of
exogenous variables, and various type of TVSVAR. Moreover, we would like to try Time-Varying Structural VAR
with Stochastic Volatility (TVSVAR-SV) and Time-Varying Structural VAR with Sign Restrictions (TVSVAR-

SR). TVSVAR-SV is proposed by Primiceri (2005) and TVSVAR-SR is the dynamic version of Uhlig (2005)
22

22Braun and Shioji (2006) and Kamada and Sugo (2006) analyze the Japanese economy using sign-restricted VAR.
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Appendix A Data Source
We use quarterly macroeconomic data of the Japanese economy from 1980:Q1 to 2006:Q3.

e Uncollateralized overnight call rate, averaged over three months (Bank Of Japan): uncollateralized overnight
call rate, monthly average (July 1985 - September 2006) and collateralized overnight call rate, monthly av-
erage (January 1980 - July 1985) are liked at July 1985.
http://www.boj.or.jp/en/theme/research/stat/market/index.htm

e Seasonal adjusted real/nominal GDP (Cabinet Office): Quarterly Estimates of GDP, chained, (1994:Q1-
2006:Q3) and Quarterly Estimates of GDP, fixed-based, (1980:Q1-1994:Q1) are linked at 1994:Q1.

http://www.esri.cao.go.jp/en/sna/menu.html

e Seasonal adjusted GDP deflator (Cabinet Office): deflator is calculated from seasonal adjusted real/nominal
GDP.

http://www.esri.cao.go.jp/en/sna/menu.html

o Real effective exchange rate (Bank Of Japan):
http://www.boj.or.jp/en/theme/research/stat/market/forex/index.htm

Appendix B Block Recursive TVSVAR

In subsection 3.1, the macroeconomic variables of FR-TVSVAR(1) are ordered from exogenous variables to en-
dogenous variables. This order of variables is a strong restriction on conventional SVAR. To release the restriction,
Christiano et al. (1999) propose “block-recursive” structural VAR. They partiipimto three blocks:

Y;ﬁ = [XfJMPt?Zt]l?

where X, is a non-monetary block\ P, is a monetary policy blockZ, is a monetary block.
We estimate the first order of block recursive TVSVAR(BR-TVSVAR(1)) as a benchmark model (from 1980:Q1
t0 1998:Q4). BR-TVSVAR(1) is given by

Yo =b111Ye—1 +b121smi—1 Fb131,08—1 + b1 a1 €1+ Crp + €1y, (B1)
T = b2,1,0,¢Y +b2,1,1,0Ye—1 +b2214Te—1 + ba31,48—1 + b2a1,0€0—1 + Co ¢ + €24, (B2)
i = 03,104yt + 032,07t +b3.1,1,4Y¢—1 + b3,21¢Te—1 +0331,¢8e—1 + b3,4.1,¢€t—1 + C3.+ + €3¢, (B3)

€t = byg,1,0,tYt + 042,06 + ba3,0,8% +ba1,1,6Ye—1 +ba21,tTe—1 + b3 1 4%—1 +baa1 €1+ Cap + €4
(B4)

wherei; is the first difference of the short-term interest rateis the rate of inflationy, is the growth rate of real
output, anc, is the return of the real effective exchange rate

Z\We set the number of particled/, to 10000. The other parameters of simulation are same in Yano (2007b) and Yano
(2007a). All time-varying coefficients are standardized as follows:

bz,y,z,t = Sdezp/8d0b37

wheresd..; is the standard deviation of an explaining variable adgk, is the standard deviation of an observation (this
standardization method may not be best).
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[Figure 22 about here.]
[Figure 23 about here.]
[Figure 24 about here.]

[Figure 25 about here.]

Appendix C  Non-Gaussian State Space Model

We describe the detail of a non-Gaussian state space model. The time varying coefficigptandd; ,, ; are

estimated by using MCPF. The non-Gaussian state space representation is given by
Ty = Fﬁﬂt_l + G’Ut,
Yir = Hyxy + € ¢, (C5)
i=1,2,--,k,
whereF, G, H; are(L x L), (L x L), and(1 x L) matrices, respectively; is an(L x 1) vector of coefficients,
v, is anL variate possibly non-Gaussian noisg, is a possibly non-Gaussian noise, apd is an observation.

The symbolL is kp+n+1i— 1. The detail of these vectors and matrices are explained in the following paragraphs.
In our algorithm, the matriceF’, G are specified as follows.

F=1I, G=1IL, (C6)

wherel} is anL-dimensional identity matrix.

For the convenience of the expression, we use the following notations:

bio: = (bi1,00 7 5 bii-1,04),

Bi,t = (b1, bi2,1,60 5 Dk 1t
b’i,l,Q,tv e 7b’i,k,2,t7 e 7bi,1,p,t7 e 7bi,k‘,p,t)7
di,t = (di,l,ta di,Q,tv T 7di,n,t)a C7)
TA’L',t = (yl,ta Y2ty 7yi—1,t)7
i:l‘t = (yl,ta Y2,t—15 " 5 Yk,t—1,"""
Y1t—p> Y2,t—p, " 7yk,t7p)7
ft = (ul,t7/€7 U2 t—ky " 7Un,t7n)~
The vectorsg; and H; are defined as follows. For the first componenygfi = 1,
- ~ T
Ty = (bl,tadl,t) s
PO (C8)
H,; = (hm .ft)-
For theith component of(t), 1 < i < k,
- - A T
Ty = (bi,O,tabi,tvdi,t) )
(C9)

Ht = (’i;i,ta i"tv ft)
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Figure 18: Q-Q Plot (Full Recursive SVAR)
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Table 1: Root Mean Square Error

RMSE

Time-Varying SVAR

Fixed Coefficient SVAR

0.01950
0.10686
0.04861
0.24998

0.44802
0.50403
0.89696
415722
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Table 2: Root Mean Square Error

RMSE | Time-Varying SVAR | Fixed Coefficient SVAR
€ 0.04303 0.45066
€r 0.11014 0.52432
€y 0.08479 0.89801
€e 0.08479 415124

47



